y = f (M) funksiya o`z aniqlanish sohasi D(f ) ning har bir nuqtasida qabul qilishi mumkin bo`lgan barcha qiymatlari to`plamiga esa uning qiymatlari to`plami yoki o`zgarish sohasi deyiladi. Funksiya qiymatlar to`plami R1 haqiqiy sonlar to`plamining qism osti to`plami bo`lib, E(f ) yoki E(y) belgilar bilan yoziladi. Misollar: Quyida berilgan funksiyalarning aniqlanish sohalarini to-ping va tegishli fazoda tasvirlang. Funksiyalarning qiymatlar to`plamini aniqlang: 1) y = log2(3–x), 2) , 3) y = arccos x1 + arccos x2 + arccos x3 . 1) bir o`zgaruvchili y = log2(3-x) funksiya aniqlanish sohasi D(y): 3–x > 0 tengsizlik yechimidan iborat. Shunday qilib, D(y) = (- ∞; 3) є R1. Funksiya aniqlanish sohasi sonlar o`qida (- ∞; 3) ochiq nur ko`rinishida tasvirlanadi: Funksiya qiymatlari to`plami esa sonlar o`qidan iborat, ya`ni E(y) = R1. 2) funksiya ikki o`zgaruvchili bo`lib, uning aniqlanish sohasi D(y) = {M(x1; x2) є R2 | x1 ≥ }. Funksiya aniqlanish sohasi haqiqiy koordinatalar tekisligi R2 da quyidagicha tasvirlanadi: Funksiya qiymatlari to`plami E(y) = [0; ∞). D(y) = {M(x1; x2; x3) є R3 | -1≤ x1≤ 1, -1≤ x2 ≤ 1, -1 ≤ x3 ≤ 1}. Funksiya aniqlanish sohasi R3 fazoda qirrasi 2 ga teng, simmetriya markazi koordinatalar boshida, yoqlari esa koordinatalar tekisliklariga parallel bo`lgan kubdan iborat: Funksiya qiymatlari to`plami E(y) = [0; 3π]. 2. Bir o`zgaruvchili funksiya umumiy xossalari va grafigi. Tes-kari funksiya. V R1 nuqtalar to`plamida aniqlangan bir o`zgaruvchili y = f (x) funksiyaning grafigi deb, mumkin bo`lgan barcha (x; f (x)), x є V juf-tliklarning x0y to`g`ri burchakli koordinatalar tekisligidagi aksiga aytiladi.
Do'stlaringiz bilan baham: |