Sferik koordinatalar sistemasining ba'zi tadbiqlar


Foydalanilgan adabiyotlar


Download 51.84 Kb.
bet3/4
Sana28.12.2022
Hajmi51.84 Kb.
#1020625
1   2   3   4
Bog'liq
sferik-koordinatalar-sistemasining-ba-zi-tadbiqlar

Foydalanilgan adabiyotlar

  1. Umirkulova G.H., Rasulov T.H. (2020). Characteristic property of the Faddeev equation for three-particle model operator on a one-dimensional lattice. European science. 51:2, Part II, pp. 19-22.

  2. yMupkynoBa r.X. (2020). O^eHku gna rpaHen cymecTBennoro cnekTpa MogenbHoro onepaTopa Tpex nacTu^ Ha pemeTke. BHO. 16-2 (94), C. 14-17.

  3. yMupkynoBa r.X. (2020). Hcnonb3OBaHue Mathcad npu oSyneHuu TeMe «KBagpaTunHbie $yHK^uu». npodneMbi nedaroruku. Ne 6 (51), C. 93-95.

  4. Umirqulova G.H. (2021). Uch zarrachali model operatorning xos funksiyalari uchun Faddeev tenglamasi. Scientific progress. 2:1, 1413-1420 b.

  5. yMupbynoBa r.X,. (2021). naH^apagaru yn 3appananu Mogenb onepaTopra moc kaHan onepaTopnap Ba ynapHUHr cnekTpnapu. Scientificprogress. 3:2, 51-57 6.

  6. Umirqulova G.H. (2021). Uch zarrachali model operator xos funksiyalari uchun simmetrik Faddeyev tenglamasi. Scientific progress. 2:3, pp. 406-413.

  7. yMupkynoBa r.X. (2021). MecTonono^eHue coocTBeniibix 3HaneHun gByx ceMencTB Mogenen Opugpuxca. Hayka, mexHUka u o6pa3OBawue, 77:2, C. 56-60.

  8. yMupkynoBa r.X. (2021). CymecTBennibH u guckpeTHbiH cneiHayka u o6pa3OBawue cerodH^. 60:1, C. 17-20.

  9. Umirqulova G.H. (2021). Qutb koordinatalar sistemasi yordamida Fridrixs modelining xos sonlarini o'rganish. Science and Education, 2:7, 7-17-betlar.

  10. Rasulova Z.D. (2014). Investigations of the essential spectrum of a model operator associated to a system of three particles on a lattice. J. Pure and App. Math.: Adv. Appl., 11:1, pp. 37-41.

  11. Rasulova Z.D. (2014). On the spectrum of a three-particle model operator. Journal of Mathematical Sciences: Advances and Applications, 25, pp. 57-61.

  12. Rasulov T.H., Rasulova Z.D. (2014). Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials. Nanosystems: Physics, Chemistry, Mathematics, 5:3, pp. 327-342.

  13. PacynoB T.X., PacynoBa 3.^. (2015). CnekTp ogHoro TpexnacTUHHoro MogenbHoro onepaTopa Ha pemeTke c HenokanbHbiMu noTeH^uanaMu. Cudupckue ^nekmpoHHbie MameMamuuecKue u3Becmux. 12, C. 168-184.

  14. Kurbonov G.G., Rasulov T.H. (2020). Essential and discrete spectrum of the three-particle model operator having tensor sum form. Academy. 55:4, pp. 8-13.

  15. Bahronov B.I., Rasulov T.H. (2020). Structure of the numerical range of Friedrichs model with rank two perturbation. European science. 51:2, pp. 15-18.

  16. PacynoB T.X., EaxpoHOB E.H. (2015). O cnekTpe TeH3opHOH cy\i\ibi Mogenen Opugpuxca. Monodou yueHuu. Ne 9, C. 17-20.

  17. XaHuTOBa X.r. (2020). O nucne cooctbchhnx 3HaneHUH Mogenu Opugpuxca c gBy\iepnib\i B03Mym,eHueM. Hayka, mexHUka u o6pa3OBawue, 8(72), C. 5-8.

  18. TomeBa H.A., HcMOunoBa ^.^. (2021). Hkku kaHannu Monekynap- pe3OHaHc Mogenu xoc KUHMamaapuHUHr MaB^ygnuru. Scientific progress. 2:1, 111- 120.

  19. Rasulov T.H., Dilmurodov E.B. (2020). Eigenvalues and virtual levels of a family of 2x2 operator matrices. Methods Func. Anal. Topology, 1(25), 273-281.

  20. ^unMypogoB ^.E. (2017). Huchoboh o6pa3 MHoroMepHOH ooooihchhoh Mogenu Opugpuxca. Monodou yueHuu, 15, 105-106.

  21. Rasulov T.H., Dilmurodov E.B. (2020). Analysis of the spectrum of a 2x2 operator matrix. Discrete spectrum asymptotics. Nanosystems: Phys., Chem., Math., 2(11), 138-144.

  22. Rasulov T.H., Dilmurodov E.B. (2019). Threshold analysis for a family of 2x2 operator matrices. Nanosystems: Phys., Chem., Math., 6(10), 616-622.

  23. PacynoB T.X., ^unMypogoB ^.E. (2020). EeckOHeHHocTb nucna cooctbchhnx 3HaneHUH oiiepaTopiibix (2x2)-MaTpu^. AcuMnTOTUka guckpeTHoro cnekTpa. TM0. 3(205), 368-390.

  24. HaTunoB X.M. (2021). O co6cTBeHHbix nucnax TpexguaroHanbHOH MaTpu^bi nopagka 4. Academy, 3(66), 4-7.

  25. HaTunoB X,.M. (2021). 4-TapTu6nu MaTpu^a xoc coHnapuHUHr TacHu^u. Scientificprogress. 2:1, 1380-1388 SeTnap.

  26. HaTunoB X.M., napMOHOB X.O. (2021). HekOTopbie 3aganu, CBoguMbie k oneparopHbiM ypaBHeHu^M. BHO, 113:10, nacTb 3, C. 15-21.

  27. HakaeB C.H., PacynoB T.X. (2003). Mogenb b Teopuu BO3\iyinennn cymecTBeinioro cnekTpa \iiioroiiacTniiiibix onepaTopoB. MameMammecKue 3aMemku. 73:4, C. 556-564.

  28. HakaeB C.H., PacynoB T.X. (2003). 06 ^$$ekTe E^uMOBa b Mogenu Teopuu B03Myw,eHUH cyinecTBei ii ioro cnekTpa. (lyiiKiiiioiiciHbiiuiu aHanu3 u ero nyuooo^cHUO, 37:1, C. 81-84.

  29. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics. Journal of Statistical Physics, 127:2, pp. 191-220.

  30. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). The Efimov Effect for a Model Operator Associated with the Hamiltonian of non Conserved Number of Particles. Methods of Functional Analysis and Topology, 13:1, pp. 1-16.


Download 51.84 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling