Sferik koordinatalar sistemasining ba'zi tadbiqlar


Download 51.84 Kb.
bet4/4
Sana28.12.2022
Hajmi51.84 Kb.
#1020625
1   2   3   4
Bog'liq
sferik-koordinatalar-sistemasining-ba-zi-tadbiqlar

References

  1. Umirkulova G.H., Rasulov T.H. (2020). Characteristic property of the Faddeev equation for three-particle model operator on a one-dimensional lattice. European science. 51: 2, Part II, pp. 19-22.

  2. Umirkulova G.Kh. (2020). Estimates for the faces of the essential spectrum of the model operator of three particles on a lattice. VNO. 16-2 (94), pp. 14-17.

  3. Umirkulova G.Kh. (2020). Using Mathcad when teaching the topic "quadratic functions". Problems of pedagogy. No. 6 (51), pp. 93-95.

  4. Umirqulova G.H. (2021). The Faddeev equation for the inherent functions of a three-particle model operator. Scientific progress. 2: 1, 1413-1420 b.

  5. Umirqulova G.H. (2021). The three-particle model in the grid corresponds to the operator channel operators and their spectra. Scientific progress. 3: 2, pp. 51-57 b.

  6. Umirqulova G.H. (2021). The three-particle model is a symmetric Faddeev equation for operator-specific functions. Scientific progress. 2: 3, pp. 406-413.

  7. Umirkulova G.Kh. (2021). Location of eigenvalues of two families of Friedrichs models. Science, technology and education, 77: 2, pp. 56-60.

  8. Umirkulova G.Kh. (2021). Essential and discrete spectra of the family of Friedrichs models. Science and education today. 60: 1, pp. 17-20.

  9. Umirqulova G.H. (2021). Study the unique numbers of the Friedrichs model using the polar coordinate system. Science and Education, 2: 7, pp. 7-17.

  10. Rasulova Z.D. (2014). Investigations of the essential spectrum of a model operator associated to a system of three particles on a lattice. J. Pure and App. Math .: Adv. Appl., 11: 1, pp. 37-41.

  11. Rasulova Z.D. (2014). On the spectrum of a three-particle model operator. Journal of Mathematical Sciences: Advances and Applications, 25, pp. 57-61.

  12. Rasulov T.H., Rasulova Z.D. (2014). Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials. Nanosystems: Physics, Chemistry, Mathematics, 5: 3, pp. 327-342.

  13. Rasulov T.Kh., Rasulova Z.D. (2015). Spectrum of one three-particle model operator on a lattice with nonlocal potentials. Siberian electronic mathematical news. 12, pp. 168-184.

  14. Kurbonov G.G., Rasulov T.H. (2020). Essential and discrete spectrum of the three-particle model operator having tensor sum form. Academy. 55: 4, pp. 8-13.

  15. Bahronov B.I., Rasulov T.H. (2020). Structure of the numerical range of Friedrichs model with rank two perturbation. European science. 51: 2, pp. 15-18.

  16. Rasulov T.Kh., Bakhronov B.I. (2015). On the spectrum of the tensor sum of Friedrichs models. Young scientist. No. 9, pp. 17-20.

  17. Khayitova Kh.G. (2020). On the number of eigenvalues of the Friedrichs model with two-dimensional perturbation. Science, technology and education, 8 (72), pp. 5-8.

  18. Tosheva N.A., Ismoilova D.E. (2021). The presence of specific values of the two-channel molecular-resonance model. Scientific progress. 2: 1, 111-120.

  19. Rasulov T.H., Dilmurodov E.B. (2020). Eigenvalues and virtual levels of a family of 2x2 operator matrices. Methods Func. Anal. Topology, 1 (25), 273-281.

  20. Dilmurodov E.B. (2017). Numerical image of the multidimensional generalized Friedrichs model. Young Scientist, 15, 105-106.

  21. Rasulov T.H., Dilmurodov E.B. (2020). Analysis of the spectrum of a 2x2 operator matrix. Discrete spectrum asymptotics. Nanosystems: Phys., Chem., Math., 2 (11), 138-144.

  22. Rasulov T.H., Dilmurodov E.B. (2019). Threshold analysis for a family of 2x2 operator matrices. Nanosystems: Phys., Chem., Math., 6 (10), 616-622.

  23. Rasulov T.Kh., Dilmurodov E.B. (2020). Infinity of the number of eigenvalues of operator (2x2) -matrices. Asymptotics of the discrete spectrum. TMF. 3 (205), 368-390.

  24. Latipov Kh.M. (2021). On the eigenvalues of a tridiagonal matrix of order 4. Academy, 3 (66), 4-7.

  25. Latipov X,.M. (2021). 4-tartibles matrix hos sonlaring tasnifi. Scientific progress. 2: 1, 1380-1388 betlar.

  26. Latipov Kh.M., Parmonov Kh.F. (2021). Some problems reducible to operator equations. VNO, 113: 10, part 3, pp. 15-21.

  27. Lakaev S.N., Rasulov T.Kh. (2003). Model in perturbation theory of the essential spectrum of many-particle operators. Mathematical notes. 73: 4, pp. 556- 564.

  28. Lakaev S.N., Rasulov T.Kh. (2003). On the Efimov effect in the perturbation theory model of the essential spectrum. Functional analysis and its applications, 37: 1, pp. 81-84.

  29. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics. Journal of Statistical Physics, 127: 2, pp. 191-220.

  30. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). The Efimov Effect for a Model Operator Associated with the Hamiltonian of non Conserved Number of Particles. Methods of Functional Analysis and Topology, 13: 1, pp. 1-16.




www.openscience.uz



Download 51.84 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling