Shartli yaqinlashuvchi qatorlar. Riman teoremasi” Mavzu: “Shartli yaqinlashuvchi qatorlar. Riman teoremasi
Download 0.54 Mb.
|
“Shartli yaqinlashuvchi qatorlar. Riman teoremasi” 5555555
- Bu sahifa navigatsiya:
- 1 –tasdiq.
- 3-teorema (B.Riman).
Natija. Agar musbat hadli qator yaqinlashsa ,u hadlarining o`rnini istalgancha almashtirgandan keyin ham huddi o`sha yig`indiga yaqinlashadi .
4. Riman teoremasi haqida. Shartli yaqinlashuvchi qator hadlarining o`rnini almashtirish haqidagi yuqoridagi natijani B.Riman umumiy holda ham isbot qilgan .Chunonchi agar (10) qator shartli yaqinlashsa ,uning hadlari o`rnini o`zgartirish natijasida uni istalgan avvaldan berilgan songa yaqinlashuvchi qilish mumkin . Bu teoremani isbot qilishdan oldin , biz shartli yaqinlashuvchi qatorda musbat hadlari ham, manfiy hadlari ham cheksiz ko`p ekanini ko`rsatamiz. Aslida biz bundanda kuchliroq natijani ,ya`ni bunday qatorlarda musbat hadlarining yig`indisi ham , manfiy hadlarining yig`indisi ham chegaralanmagan ekanini isbotlaymiz . Shu maqsadda (10) qatorning n-nomerli qismiy yig`indisi tarkibiga kiruvchi musbat hadlari yig`indisini simvol orqali va o`sha qismiy yig`indi tarkibiga kiruvchi manfiy hadlarining absolyut qiymatlari yig`indisini simvol orqali belgilaymiz . 1 –tasdiq. Agar (10) qator yaqinlashsa , u holda (22) tenglik bajariladi. Isbot. Ravshanki , va kattaliklar ta`rifga ko`ra , (10) qatorning n- nomerli qismiy yig`indisi (23) ga teng bo`lib ,hadlarni absolyut qiymatlaridan hosil bo`lgan qatorning n- qismiy yig`indisi esa (24) ga teng. Endi qayd etamizki, (10) qatorning biror S soniga yaqinlashishi (25) tenglik bajarilishini anglatsa, ko`rsatilgan qatorning shartli yaqinlashishi esa qatorning absolyut yaqinlashmas ekanini, ya`ni (26) munosabat bajarilishini anglatadi . Agar (25) va (26) tengliklarni (23) va (24) tengliklar bilan taqqoslasak, , tengliklarga ega bo`lamiz. Ravshanki, bu munosabatlardan talab qilingan (22) tenglik kelib chiqadi . 3-teorema (B.Riman). Agar (10) qator shartli yaqinlashsa, istalgan haqiqiy A soni uchun bu qator hadlari o`rnini shunday almashtirish mumkinki, natijada hosil bo`lgan (9) qator yaqinlashuvchi bo`lib, uning yig`indisi A ga teng bo`ladi. Isbot. Faraz qilaylik, (10) qator shartli yaqinlashsin. U holda, qator yaqinlashishining zaruriylik shartiga ko`ra, bu qatorning musbat hadlari ham, manfiy hadlari ham nolga intiladi.Shuning uchun qatorning musbat hadlarini kamayuvchi tartibda joylashturishimiz mumkin. Bunda hosil bo`lgan ketma-ketlikni orqali belgilaymiz.Xuddi shunga o`xshash ,manfiy hadlar absolyut qiymatlarini kamayuvchi tartibda joylashtirib , hosil bo`lgan ketma –ketlikni orqali belgilaymiz. 1-tasdiq va 9.3.3-teoremaning natijasidan quyidagi munosabatlar kelib chiqadi: , (27) Endi A ixtiyoriy berilgan haqiqiy son bo`lsin . (10) qator hadlarini o`rnini quyidagi ravishda almashtiramiz . Dastlab musbat hadlarni shunday qo`shib boramizki, toki ularning yig`indisi berilgan A dan oshsin.Bunga erishishimiz bilan, hosil bo`lgan yig`indidan sonlarni shunday ayirib boramizki, toki kattalik A dan kichik bo`lsin. Madomiki (10) shart bajarilar ekan ,bu har ikki qadamni ham amalga oshirish mumkin. Ikkinchi qadamda yana musbat hadlarni shunday qo`shib boramizki,toki ularning umumiy yig`indisi yana A dan oshib ketsin .So`ngra ,hosil bo`lgan yig`indidan sonlarni shunday ayirib boramizki, toki qiymat A dan kichik bo`lsin. k) Bu jarayonni davom ettirib ,k-qadamda hosil qilingan yig`indiga musbat hadlarni shunday qo`shib boramizki, toki umumiy yig`indi berilgan A sondan oshib ketsin, so`ngra ,manfiy hadlarni shunday qo`shib (ya`ni larni ayirib) boramizki, tok umumiy yig`indi o`sha A sonidan kichik bo`lsin . Albatta, bu jarayon hech qachon tugamaydi .Chunki har bir qadamda biz hech bo`lmasa bitta musbat va bitta manfiy hadni qo`shib borayapmiz va bunday hadlarning soni ,yuqorida ko`rsatganimizdek, cheksiz ko`pdir.Bu jarayon natijasida biz (10) qator hadlarining o`rni almashtirilgan yangi qatorga ega bo`lamiz.Mana shu yangi qatorning S(n) qismiy yig`indilari berilgan A soniga yaqinlashishini ko`rsatamiz .Ravshanki, hadlar o`rnini almashtirish jarayoniga asosan , k- qadamdan so`ng qismiy yig`indilar sonidan oshib ketmaydi va, xuddi shu kabi , dan kichik ham bo`lmaydi .Bundan chiqdi , bo`lganda quyidagi (28) qo`shaloq tengsizlik bajariladi. Shartga ko`ra (10) qator shartli yaqinlashgani sababli ,bu qator hadlari nolga yaqinlashadi .Demak, (28) dan munosabat kelib chiqadi, ya`ni hadlarining o`rni almashtirilgan qator avvaldan berilgan A soniga yaqinlashar ekan . Download 0.54 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling