Solid State Technology Volume: 3 Issue: Publication Year: 2020 5598


Download 0.49 Mb.
Pdf ko'rish
bet8/11
Sana26.01.2023
Hajmi0.49 Mb.
#1126806
1   2   3   4   5   6   7   8   9   10   11
Solid State Technology 
Volume: 63 Issue: 5 
Publication Year: 2020 
5606
Archives Available @ www.solidstatetechnology.us 
The initial phase of electromagnetic waves varies in proportion to the depth of their 
propagation. Moreover, as electromagnetic waves penetrate deeper into the rail
electromagnetic oscillations are delayed in phase, in comparison with the surface, by the 
value 
, where the wave propagation velocity is determined by the formula:
. (19) 
The penetration depth of an alternating demagnetizing field into a rail lash is determined only 
by the frequency of this field. The frequency dependence of the penetration of the 
electromagnetic wave into the cavity of the rail is shown in Figure 8. 
Fig. 8. Penetration Dependence electromagnetic wave in the cavity of the rail lash 
The ferromagnetic material of the rail lash has a magnetic permeability 
and a 
specific conductivity 
. As can be seen from the graph, the lower the frequency of 
electromagnetic waves, the greater their penetrating ability. So for a frequency of 12 Hz, an 
electromagnetic wave penetrates deep into the rail whip to a depth of 9 mm.
The propagation energy of an electromagnetic wave is characterized by a Poyding 
vector, the average value of which is determined by the expression: 
(20) 
According to the formula (20), it can be calculated that only 0.2% of the energy absorbed by 
the material of the rail lash penetrates into the rail lath, equal to the wavelength . 


Solid State Technology 
Volume: 63 Issue: 5 
Publication Year: 2020 
5607
Archives Available @ www.solidstatetechnology.us 
III. DEVELOPED DEVICES AND THEIR EXPERIMENTAL CHARACTERISTICS 
A mobile demagnetizing device with improved energy parameters and characteristics has 
been developed, which provides full demagnetization of rail lashes along the entire perimeter 
and along the entire length of the rail. It ensures the safety of railway transport. Fig. 9. 
presented diagrams and photographs of demagnetizing devices. 
1
4
3
5
2
а) hand held mobile 
b) stationary device 
v) platform wagon 
Fig. 9. Designed demagnetizing devices 
The elements of the device are mounted on a platform on which the container of the pulse 
demagnetization car is mounted, shown in Figure 10.
Fig. 10. Pulse demagnetization wagon 
The experimental determination of the state of single rails on the Bayavut-Yangier section 
with a length of 3497 km was made by measurements of the residual magnetization, which 
showed that they have an uneven magnetization along their length. The developed 
demagnetizing device made it possible to reduce the magnetic field induction along the rail. 
Moreover, the amplitude of the magnetic induction has a different magnitude and polarity of 
the magnetization peaks at the ends of these rails. The measurement results are shown in 
Fig.11.



Download 0.49 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling