Солнечные фотоэлектрические элементы и модули
Каскадные фотоэлектрические преобразователи
Download 291.75 Kb.
|
- Bu sahifa navigatsiya:
- 8. Линзовые солнечные панели
7. Каскадные фотоэлектрические преобразователи
Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, с энергией превышающей ширину запрещенной зоны, а фотоны меньшей энергии полезно не используются. Один из путей преодоления этого ограничения – применение многослойных структур из двух и более солнечных элементов с различной шириной запрещенной зоны. Такие элементы называются многопереходными или каскадными. Каскадные элементы могут достичь большей эффективности фотоэлектрического преобразования, поскольку используют значительно большую часть солнечного спектра[10]. В типичном каскадном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией. Не поглощенные верхним слоем фотоны проникают в следующий элемент с меньшей шириной запрещенной зоны, где часть их поглощается и т.д. Современный опыт разработки трехкаскадных фотоэлементов позволяет надеяться на практическую реализацию повышенных значений кпд в четырех-, пяти-, а может быть, и в еще более многокаскадных структурах. Нет никаких научно-теоретических сомнений, что надежды оправдаются, если будут найдены подходящие материалы для промежуточных каскадов, и эти материалы будут иметь надлежащее качество. 8. Линзовые солнечные панели Эффективное использование солнечной энергии в интересах широкого развития экологически чистой электроэнергетики возможно лишь в случае применения достаточно мощных солнечных фотоэлектрических установок, имеющих высокий КПД и относительно низкую стоимость. Эти противоречивые требования могут быть успешно удовлетворены при создании установок с концентраторами солнечного излучения и высокоэффективными гетероструктурными фотопреобразователями на основе арсенида галлия. В качестве концентраторов при этом целесообразно использовать дешевые плоские линзы Френеля, объединенные в многоэлементные блоки, КПД которых может достигать 85-90%[11]. Рисунок 7 – Принцип действия линзы Френеля Оптимальная степень концентрации солнечного излучения в таких установках для наземных условий применения составляет 400-800. Это позволяет примерно в такое же количество раз уменьшить площадь полупроводниковых солнечных элементов (СЭ), необходимую для выработки заданной электрической мощности, по сравнению с плоскими солнечными батареями, преобразующими неконцентрированное солнечное излучение, и дает возможность использовать дорогие высокоэффективные СЭ на основе арсенида галлия без увеличения стоимости установки. Концентрирование солнечного излучения позволяет, кроме того, повысить КПД гетероструктурных СЭ до 25% и более в однопереходных элементах и до 35% – в каскадных. При таких значениях КПД и непрерывном слежении за Солнцем, необходимом при использовании концентраторов, удельный энергосъем с единицы площади лучевоспринимающей поверхности установки будет в 2-3 раза выше по сравнению с неподвижными плоскими кремниевыми солнечными батареями(СБ). Соответственно меньше будут общая площадь и масса установок с концентраторами, расход материалов и объем работ, связанных с их созданием и монтажом. Download 291.75 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling