Современное состояние и
Download 115.06 Kb. Pdf ko'rish
|
15 Samarkand
Министерство по развитию информационных технологий и коммуникаций Республики Узбекистан НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАЗВИТИЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ И ИСКУССТВЕННОГО ИНТЕЛЛЕКТА САМАРКАНДСКИЙ ФИЛИАЛ ТАШКЕНТСКОГО УНИВЕРСИТЕТА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ИМЕНИ МУХАММАДА АЛ-ХОРАЗМИЙ СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ И ИСКУССТВЕННОГО ИНТЕЛЛЕКТА Сборник докладов республиканской научно-технической конференции Самарканд, 26-27 октября 2022 г. ЧАСТЬ 2 Ташкент – 2022 Propagation of nonlinear population waves in space 65 Секция 5. Алгоритмизация, моделирование и оптимизация UDC 519.71(575.1) PROPAGATION OF NONLINEAR POPULATION WAVES IN SPACE * Mukhamedieva D.K., Madrakhimov A.Kh. * dilnoz134@rambler.ru Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan Abstract. Locusts cause enormous damage to vegetation in many areas of the earth. A mathematical model of propagation of non-linear waves in space in various excitable media is constructed, since they describe the flight of gregarious locusts, the corresponding system of differential equations is qualitatively investigated, and a solution is found that corresponds to the flight regime of gregarious locusts. An analytical solution is obtained, and numerical studies are carried out. Simple approximate analytical expressions for calculating the propagation velocity of the locust population wave and its characteristic length are obtained. Keywords: Nonlinear equation, model, algorithm, diffusion, wave solutions, population. 1 Introduction The processes that determine the dynamics of the number of any insects are associated with the interactions of two kingdoms of living organisms: plants and animals. For example, in [1] a model of locust transition to the active phase is considered, in [2] it is assumed that locust migration is completely determined by air currents, in [3] a creeping model of locust migration is constructed. To describe the flight of a swarm of locusts, parabolic systems of differential equations can be applied, since only they describe the propagation of nonlinear waves in space in various excitable media [4-8]. It should be noted that when solving systems of parabolic equations describing the propagation of nonlinear waves, it is necessary not only to prove the existence of wave solutions, but also to determine the wave velocity as an eigenvalue of the problem. For each wave model, the wave propagation velocity (as well as the flame propagation velocity in the theory of combustion [9] and, in the general case, in the study of equations of mathematical physics [10]) should be determined, based on this particular system of equations, as an eigenvalue of the problem, and this eigenvalue should correspond to the population wave profile as an eigenfunction of the problem. This is how the problems of the propagation of waves of biological populations are solved in [5,6,11]. The purpose of this study is to construct a system of differential equations with a wave solution, which describes the flight of a gregarious locust in the form of a solitary wave (soliton), and to find approximate analytical expressions for the propagation velocity of a soliton and its geometric dimensions as functions of defining parameters. 2 Methods System of non-stationary equations describing in a one-dimensional setting the change in the concentration of the biological population N(x, t) and the food base R(x, t), averaging the discrete process of flight of the gregarious locust in space and time, can be written as [5, 8]: ( ) N N F N t x x , (1) 66 Mukhamedieva D.K., Madrakhimov A.Kh. Section 5. Algorithmization, modeling and optimization 1 f R N t , (2) Where t is time, x is spatial coordinate, τƒ–characteristic feeding time, μ–coefficient of locust mobility, F(N) is a function describing the local change in population concentration. In the logistic population (see [8]) F (N)=(B–D) N, where B and D are birth and death functions. It is the presence in the parabolic equation of the terms describing the increase and decrease in the population concentration that can ensure the existence of a stationary wave solution (see [5, 7]). A local decrease in the concentration of locust individuals in flight occurs due to the death of locusts for various reasons (diseases, their absorption by birds and even other individuals of the flock). Locusts do not multiply during the flight, but the natural decline of the swarm is the attraction of locusts to the swarm from the environment through special chemical products released by insects. In this regard, equation (1) can be rewritten in the form: 1 1 ( ) c e N N N t x x , (3) where: τ e – characteristic lifetime of individuals in a population, τ c –characteristic time of population replenishment due to the desire of locust individuals to unite in a swarm. We will assume that τf, τc, τe are constant values. The coefficient of mobility of locust individuals μ increases with a decrease in the concentration of the food base [12]. 0 R K R , (4) Let's call K R the unit concentration of the food supply, μ0 the coefficient of the mobility of individuals at a unit concentration of the food supply. We will consider the stationary mode of propagation of the locust population as a wave. If dimension less variable sand parameters: , , r R R N r u K K then equations (3) and (2) taking into account (4) take the following form: 1 , ,0 t rr r u ku D u u u r r r (5) where r is the usual Dirac delta function. We now require that the area under u the outside of the circle r R be constant, i.e. 2 , . r R t u r t rdr U const (6) 3 Results To solve (5), (6) we write in the form 1 , , , ,0 . kt t rr r u r t e D r r r This problem has a fundamental solution (see, for example, the book by Courant and Hilbert) 2 /4 1 , . 4 kt r Dt u r t e Dt Thus, R t can be obtained from (6) after substitution and from the last equation, i.e. as a solution to the equation 2 / 4 ( ) 1 2 kt r Dt R t e rdr U Dt . Which after integration gives 2 4 4 ln ~2 kD ( ) / ~2 R t kDt D U t t R t dR dt kD . Therefore, the wave propagation speed is set equal to 2 kD ). Propagation of nonlinear population waves in space 67 Секция 5. Алгоритмизация, моделирование и оптимизация Instead of taking (76) as the definition of R(t), we can define the position of the wave as the position ( ) R t where and takes some fixed value u , a natural choice of 1/ 2 u . Then it is found ( ) R t from the equation 2 / 4 ( ) 1/(4 ) kt R Dt u t Dt e , namely 2 2 ( ) 4 4 ln 4 R t kDt Dt uDt . The propagation velocity dR dt for large times is found by differentiation: 1 2 dR kD O dt t (for large t), (7) which indicates the order of the asymptotic correction to the wave velocity. For large |x| and t we get ( ) 1 2 dR t kD O dt t . Consider the expressions ,0 , , , a x ct ax u x e u x t e (8) the second of which represents the solution in the form of a wave moving to the left at speed c. Let us note the front or the leading edge of the wave as a zone in which andи is small, i.e. x+ct<0 and |х+ct | great. Substituting the expression for the form of the traveling wave (8), we obtain the dispersion relation са=k+Da 2 for the dependence c(a), and the minimum speed is still equal to min 2 c kD ; is the speed at which 0 / a a k D For values of a from the range of 0 0 a a wave speed min c c . Let us now consider 0 min , a x ax e e at 0 x and note that for the linear equation the solutions depend monotonically on the initial conditions. If 0 a a , then for x<0 0 a x ax e e , so that the propagation velocity with the initial condition (8) and with such a will depend on the front or leading edge of the wave. On the other hand, the initial conditions with а>а 0 require ax e that the functions 0 a x e at x<0 be bounded from above, and therefore the propagation velocity will depend on the wave tail. In other words, if ,0 ax u x e at x for some / a a k D , , u x t then it is bounded by a pseudowave with velocity min c , namely 0 min ( ) a x c t e , for all t≥0. These arguments extend to the case of more than one spatial dimension. The results presented here can be generalized to a class of reaction equations with diffusion of the form u t = F(u) + Du xx , (9) Whereи-scalar, a F(u) continuous for 0 1 u and 1 0 ( ) 0, (0) (1) 0, (1) 0 F u du F F F . (10) These equations were discussed in detail by Aronson and Weinberger, Hadeler and Rote, who used traditional phase-plane methods, Fife and Macleod and Larson; references can also be found there to epidemic waves and early generalizations of the Fisher equation, especially to some combustion problems and to models of nerve impulse propagation, in which solutions of the traveling wave type also arise. In the last model F(u)=u(1-u)(α-u), where 0 1 . For (9), (10), by a simple extension of the above analysis using the phase plane method, it can be shown that meaningful wave solutions exist only if min 2 (0) c c DF . Since the equation is invariant under the change of x sign, there is a solution like a wave running to the right , , 0, u x t f x ct c : where now f(-∞) = 1 and f(∞)=0. Therefore, it is natural that if we start with a finite positive perturbation, in which u(x, 0) = 0 outside the finite region, then the waves will move in both directions. Note that if for those x where u(x, 0) > 0, u(x, 0) < 1, then the 68 Mukhamedieva D.K., Madrakhimov A.Kh. Section 5. Algorithmization, modeling and optimization term ku(1-u) causes the solution to grow, so that lim ( , ) 1 t u x t for all x. One can simply consider ku(1-u) as a positive source in the diffusion equation when u > 0, however small it may be. 4 Conclusion It is established that the Fisher equation (1) has solutions u(х, t) of the traveling wave type with values in the range from 0 to 1 and with wave velocities with с≥c min =2√kD When the initial data 0≤u(x,0)≤1 are 1 and 0 outside some finite region, then the solution u(x,t) develops into a traveling wave solution with a minimum speed c min ; it is stable, like all others with с>c min , only with respect to perturbations other than zero in a finite region. These results show that a purely numerical stability test should also be carefully considered. For the considered practical problems, however, it may turn out to be sufficient. An approximate analytical solution describing the propagation of a locust population wave is obtained. This solution has self-similarity, since the dimensionless velocity of propagation of a solitary locust population wave is a function of only the dimensionless initial concentration of the food base, while the dimension velocity depends on many parameters of the problem. Simple power- law dependences of the main characteristics of a solitary locust wave on the control parameters are obtained. It can be assumed that the developed flight model of gregarious locusts describes the stage preceding these gigantic flights, when the swarm has already formed and then flies in an unsteady mode due to its own accumulated potential. References [1] Topaz C.M., D`Orsogna M.R., EdelsteinKeshet L., Bernoff J. Locust dynamics: Behavioral phase change and swarming // PLOS Comput. Biol. – 2012. – Vol. 8.: e1002642. doi:10.1371/journal.pcbi.1002642. [2] Taylor R.A.J. A simulation model of locust migratory behavior // J. Anim. Ecol. – 1979. – Vol. 48. – P. 577–602. [3] Topaz C.M., Bernoff A.J., Logan S., Toolson W. A model for rolling swarms of locusts // Eur. Phys. J. SpecialTopics. – 2008. – Vol. 157. – P. 93–109. [4] Berezovskaya F.S., Karev G.P. Bifurcations of traveling waves in population models with taxis. Usp. physical Sciences. - 1999. - T. 169. - pp. 1011–1024 [5] Zhizhin G.V. Self-regulating waves of chemical reactions and biological populations. - St. Petersburg. : Nauka, 2004. - 164 p. [6] Zhizhin G.V., Selikhovkin A.V. Mathematical modeling of the development and distribution of populations of insect-stem pests in the forests of Russia. - St.P. : SPbGLTU, 2012. - 88 p. [7] Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. Investigation of the diffusion equation associated with an increase in the amount of a substance and its application to one biological problem // Byull. Moscow State University. - 1937. - T. 1. Issue. 6. - S. 333-358. [8] Svirezhev Yu.M. Nonlinear waves, dissipative structures and catastrophes in ecology. - M. : Nauka, 1987. - 366 p. [9] Zhizhin G.V. Combustion waves with distributed zones of chemical reactions: (Non-asymptotic theory of combustion). - St. Petersburg. : Werner Regen Publishing House, 2008. - 182 p. [10] Polozhiy G.N. Equations of mathematical physics. - M .: Higher. school, 1964. - 559 p. [11] Zhizhin G.V., Bolshakova N.N. Solitary waves in populations of multicellular animals // Mathematical Modeling. - 2000. - T. 12. No. 12. - S. 55–65. [12] Kopaneva L.M., Stebaev I.V. Locust life. - M. : Agropromizdat, 1985. - 191 p. [13] A. A. Samarskii, S. P. Kurdyumov, A. P. Mikhailov, and V. A. Galaktionov, Blow-up Regime for Quasilinear Equations of Parabolic Type. M. Nauka, 1987, 487 pages. [14] Aripov M. Methods of reference equations for solving nonlinear boundary value problems. Tashkent. Fan. 1988. p. 137. 392 СОДЕРЖАНИЕ Aripov M.M., Nigmanova D.B. Asymptotic behavior of solutions to nondivergent parabolic systems of equations with source or absorption ........................................................................................................ 7-12 Aydarova A., Yusupov R., Abduvaitov A. Mathematic models of water resources management ..................................................... 13-21 Indiaminov R., Abdullaev A., Shodmonov J. Mathematical simulation of magnetoelastic deformation of electrically conductive plate in a magnetic field .................................................................................................. 22-28 Kabulov A.V., Baizhumanov A., Berdimurodov M.A. Problem of synthesis of minimal forms of logical functions .......................................... 29-36 Kabulov A.V., Baizhumanov A., Berdimurodov M.A. Methods for minimizing disjunctions of systems of nonlinear boolean equations, based on information about the neighborhood of the 1st order ...................................... 37-43 Kabulov A.V., Baizhumanov A., Berdimurodov M.A. Solving systems of nonlinear boolean equations based on minimizing disjunctions of complex conjunctions ..................................................................................................... 44-50 Malikov Z.M., Navruzov D.P., Abdukhamidov S.K., Pulatov T.R., Mirzaliev S. Comparative analysis of turbulence models for calculation of excess velocity and temperature for axisymmetric jet .................................................................................... 51-58 Marenko V.A., Milcharek T.P., Milcharek N.A. Modeling of the social phenomenon «extremism» ......................................................... 59-64 Mukhamedieva D.K., Madrakhimov A.Kh. Propagation of nonlinear population waves in space ...................................................... 65-68 Muhamediyeva D.K., Madrakhimov A.Kh. Diffusion model for logistic population growth model .................................................. 69-76 Olimov M., Ismoilov Sh.M., Abdujalilov S.M, Studenkova D.V. Adequacy of mathematical modeling of a spatial rod .................................................... 77-82 Polatov A.M., Ikramov A.M., Jumaniyozov S.P. Numerical simulation of a non-stationary heat transfer process in contact interaction with the surrounding medium ......................................................................................... 83-90 Primova Kh.A., Gaybulov K., Yalgashev O.R. Algorithm for constructing a model for the choice of building materials for the construction ..................................................................................................................... 91-97 Sadullayeva Sh.A., Berdiyev G‘.R., Farmonkulov F.N. Gipermurakkab fraktallarning 3d shakllarini qurish usullari .......................................... 98-105 Saidalieva M., Hidirova M.B., Isroilov Sh.Yu. Mathematical modeling of regulatory mechanisms of interrelated functioning between a human brain and various organs .................................................................................. 106-115 Toirov Sh.A., Boynazarov I.M., Kudratov R.B., Kholmatov O.A. Effective methods of optimization of quantum algorithms ............................................ 116-120 Ubaydullaev M.Sh., Eshpulatov B., Ibadullaeva Z. One-dimensional exciton states in cylindrical quantum wires ....................................... 121-125 Uteuliev N.U., Djaykov G.M., Seidullaev A.K. Modeling an integral geometry problem on a parabolic family ..................................... 126-131 Yuldoshov A.Kh. Information and analytical assessment of the functioning of the gas supply network in the event of emergency situations ................................................................................... 132-135 Zadorin A.I. Interpolation of functions with large gradients in the boundary layer ............................ 136-141 393 Zaynidinov Kh.N., Mallaev O.U. Algorithm for constructing cubic spline in distributed systems ..................................... 142-147 Алимова Д.Б. Моделирование привода шпинделей аппарата хлопкоуборочной машины ........... 148-155 Анарова Ш.А., Иброҳимова З.Э., Тўхтасинов А.И. Мураккаб фрактал тузилишли тасвирларни аналитик, l-тизимлар ва IFS усуллари ёрдамида қуриш алгоритмлари ................................................................... 156-162 Анарова Ш.А., Исмоилов Ш.М., Дониев Ш.Б. Стерженларнинг геометрик ночизиқли деформацияланиш жараёнларида ҳароратни ҳисобга олган ҳолда тадқиқи ..................................................................... 163-172 Анарова Ш.А., Шокиров Д.А., Хуррамов А.Б. Постановка задачи исследованию напряженно-деформированного состояние трёхслойных стержней ................................................................................................. 173-179 Бурнашев В.Ф., Кайтаров З.Д. Математическое моделирование многофазной фильтрации в межскважинной зоне нефтяного пласта с учетом деформации пористой среды ................................ 180-189 Зикиряев Ш.Х., Сулаймонов Ф.У., Мардонов Б.А. Перенос вещества в пористой среде с учетом адсорбции ........................................ 190-193 Имомов А. Алгоритмы и программы полной проблемы собственных значений матриц ......... 194-201 Кайгермазов А.А., Кудаева Ф.Х. Математическое моделирование динамики возрастной структуры популяции ..... 202-209 Карпенко А.П. Методы синтеза адаптивных алгоритмов глобальной оптимизации ....................... 210-219 Каюмов Ш., Бекчанов Ш.Э. О состоянии и изученности математического моделирования задачи фильтрации неньютоновских и структурированных флюидов ................................ 220-227 Кодиров К.Р. Моделирования фильтрация подземных вод в многослойном пористой среде и их защита от источников загрязнения ........................................................................ 228-235 Кудаева Ф.Х., Кайгермазов А.А., Бечелова А.Р. Математическое моделирование проблем криомедицины ....................................... 236-244 Курбонов Н.М. Математическая модель фильтрации газа в пористой среде при наличии массообмена сквозь границы ....................................................................................... 245-250 Махмудов Ж.М., Усмонов А.И., Кулжонов Ж.Б. Численное решение задачи аномальной фильтрации суспензии в пористой среде с фрактальной структурой ............................................................................................ 251-256 Мирзаев И., Нишонов Н.А., Косимов Э.А. Автоматизация решения задач сейсмодинамики подземных трубопроводов при сейсмическом воздействии .......................................................................................... 257-261 Нарзуллаева Н.У. Численный алгоритм математической модели для мониторинга распространения активных аэрозольных частиц в атмосфере ................................. 262-271 Неъматов А., Назирова Э.Ш., Маҳмудова М.М. Кўп қатламли ғовак муҳитларда газ ностационар фильтрация жараёнини математик моделлаштириш ......................................................................................... 272-279 Норалиев Н.Х., Хаитбоев К. Напряженное состояние анизотропных цилиндрических оболочек с двумя неравными отверстиями ............................................................................................... 280-288 394 Нормуродов Ч.Б., Абдурахимов Б.Ф., Джураева Н.Т. Численное моделирование уравнений гидродинамической устойчивости двухфазных потоков методом предварительного интегрирования ......................... 289-296 Нуралиев Ф.М., Айтмуратов Б.Ш., Артикбаев М.А. Юпқа мураккаб конструкциявий шаклдаги анизотроп пластиналарнинг элекртомагнитэластик масаласини ечиш ................................................................... 297-304 Отакулов С., Холиярова Ф.Х. Задача оптимального управления по быстродействию для ансамбля траекторий дифференциального включения с запаздыванием ..................................................... 305-312 Равшанов Н., Аминов С.М. Численное исследование газодинамических параметров процесса фильтрации газа в неоднородных пористых средах ....................................................................... 313-328 Равшанов Н., Назаров Ш.Э., Журабоева О.C. Численное исследование процесса распространения вредных веществ в атмосфере с учетом захвата частиц элементами растительности ............................ 329-335 Равшанов Н., Назирова Э.Ш., Неъматов А.Р. Математические модели и методы численного решения задач двухфазной фильтрации жидкостей в динамически связанных двухпластовых пористых средах ............................................................................................................................. 336-344 Равшанов Н., Саидов У.М., Туракулов Ж.А. Численное исследование параметров технологического процесса фильтрования суспензий ....................................................................................................................... 345-351 Равшанов Н., Холматова И.И. Вычислительный алгоритм для решения задачи фильтрации при водонапорном режиме ............................................................................................................................ 352-361 Халджигитов А.А., Джумаёзов У.З., Тилoвов О.У. Сравнение численных решений модельных уравнений относительно напряжений, деформаций и перемещений ................................................................. 362-370 Худайбердиев М.Х., Қорабошев О.З. Прогнозлашни бир синфли алгоритмлари учун турли усулларнинг қиёсий таҳлили ........................................................................................................................... 371-375 Шафиев Т.Р., Собирова Д.О. Нелинейная математическая модель и численный алгоритм для мониторинга и прогнозирования концентрация вредных веществ в атмосфере .............................. 376-385 Юсупов М., Шарипов Х.Д. Нелинейные колебания вязкоупругой динамических систем с несколькими степенями свободы ....................................................................................................... 386-391 Download 115.06 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling