Стабилизаторы напряжения
Download 201 Kb.
|
bibliofond.ru 800902
- Bu sahifa navigatsiya:
- Введение
- 1. Подробнее в примерах
- 2. Типы
- Заключение
- Список используемой литературы
Университет ИТМО кафедра Электроники Реферат на тему: Стабилизаторы напряжения Выполнил: студент №3221 Шамрицкий К.Н. Проверил: Олехнович Р.О. СПб, 2014 ВведениеСовременная аппаратура, начиная от привычных устройств (телевизоров, бытовых приборов и пр.) до промышленных устройств,используемых в промышленности, медицине, измерительных и счетных устройств, предъявляет жесткие требования к постоянству питающих напряжений. Напряжение промышленной сети может колебаться в значительных пределах. Помимо этого, даже при малых колебаниях напряжения сети, напряжение на зажимах потребителя может измениться в значительной степени из-за изменения нагрузки,так так любая сеть обладает внутренним сопротивлением. Для того, чтобы устранить данные проблемы, мешающие стабильной работе, используют устройства, получившие название Стабилизаторы напряжения. 1. Подробнее в примерахстабилизатор ток напряжение переменный Нормальная работа большинства радиоустройств невозможна без стабилизации напряжения питания или тока нагрузки в заданных пределах. Например, радиовещательные и связные радиостанции допускают нестабильность питающего напряжения до 2-3%. Ток в фиксирующих катушках телевизионной аппаратуры должен стабилизироваться в пределах 0,5-1%. Чем чувствительнее прибор, чем точнее измерительно устройство, тем выше должна быть стабильность источников питания. Так, для электронного микроскопа величина нестабильности питающих напряжений не должна превышать 0,005%, а усилители постоянного тока и некоторые измерительные приборы высокого класса точности допускают нестабильность напряжений не более 0,0001%. 2. ТипыНапряжение сети, ток нагрузки, сопротивление нагрузки могут изменяться не только медленно (в течение нескольких часов), но и очень быстро (скачком), поэтому устройство, поддерживающее величину питающего напряжение или тока в заданных пределах, должно действовать непрерывно и автоматически. В качестве таких устройств применяются стабилизаторы напряжения или тока. Дестабилизирующими факторами могут быть также: окружающая температура, влажность, частота тока питающей сети и др. Однако основные причины нестабильности - это колебания входного напряжения и сопротивления нагрузки. Стабилизаторы подразделяются в зависимости от рода напряжения (тока) на стабилизаторы переменного напряжения (тока) и стабилизаторы постоянного напряжения. Кроме того, стабилизаторы подразделяются на стабилизаторы параметрические и компенсационные. В качестве параметрических стабилизаторов используются нелинейные элементы. Стабилизация напряжения в таких стабилизаторах осуществляется за счет нелинейности ВАХ используемого элемента. В параметрических стабилизаторах постоянного напряжения в качествее нелинейных элементов применяются кремниевые или газоразрядные стабилизаторы. Компенсационные стабилизаторы напряжения представляют собой замкнутую систему автоматического регулирования с отрицательной ОС. Эффект стабилизации в данных устройствах достигается за счет изменения параметров управляемого прибора, называемого регулирующим элементом, при воздействии на него сигнала ОС. В зависимости от типа управляемого прибора компенсационные стабилизаторы делятся на ламповые, транзисторные, тиристорные, дроссельные и комбинированные. В зависимости от способа включения регулирующего элемента относительно сопротивления нагрузки ламповые и транзисторные стабилизаторы постоянного напряжения делятся на параллельные и последовательные. По режиму работы регулирующего элемента стабилизаторы постоянного напряжения делятся на стабилизаторы с непрерывным регулированием и импульсные. В некоторых случаях стабилизаторы включают в себя несколько регулирующих элементов разного типа, например, транзистор и дроссель, транзистор и тиристор и т. д. Такого вида стабилизаторы относятся к стабилизатор комбинированного типа. Стабилизаторы переменного напряжения характеризуются дополнительными параметрами, а именно, стабильностью выходного напряжения в зависимости от частоты питающего напряжения, коэффициентом мощности, искажением формы кривой выходного напряжения. Компенсационные стабилизаторы постоянного напряжения с непрерывным регулированием могут быть выполнены как на электронных лампах, так и на транзисторах. Эти стабилизаторы представляют собой систему автоматического регулирования и обеспечивают постоянство выходного напряжения с высокой степенью с высокой степенью точности при изменении напряжения сети и тока нагрузки, а также и при иных внешних возмущениях (частота тока питающей сети, характер нагрузки, параметры среды - температура, влажность и т. д.) Стабилизаторы могут быть выполнены как с последовательным, так и с параллельным включением регулирующего элемента относительно нагрузки. В последовательной схеме регулирующий элемент включен последовательно с нагрузкой, и компенсация осуществляется за счет изменения падения напряжения на самом регулирующем элемента в параллельной схеме регулирующий элемент 2 включен параллельно с нагрузкой, а уровень выходного напряжения поддерживается за счет и тока через регулирующий элемент, в результате чего изменяется падение напряжения на гасящем сопротивлении 5, включенном последовательно с нагрузкой. Схема с параллельным включением регулирующего элемента применяется ограниченно и используется преимущественно при импульсных изменениях тока нагрузки. Стабилизаторы с последовательным включением регулирующего элемента обладают более высоким КПД, чем стабилизаторы параллельной схемы, и применяются очень широко. Данные стабилизаторы такого типа широко применяются для питания радио аппаратуры и аппаратуры связи. В качестве параметрического стабилизатора переменных напряжений может быть использован нелинейный элемент с малым динамическим сопротивлением. Таким элементом является дроссель с насыщенным сердечником. Простейший параметрический стабилизатор состоит из дросселя с ненасыщенным сердечником и дросселя с насыщенным сердечником. Параллельно насыщенному дросселю включается сопротивление нагрузки. Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора. Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20 %, ±25 %, ±30%, −25%/+15%, −35%/+15% или −45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. Ещё одним важным параметром является точность стабилизации выходного напряжения. Точность современных стабилизаторов напряжения колеблется в диапазоне от 0,5% до 8%. Точности в 8% вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовой и промышленной электротехники оборудованных инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1%). Так же более жесткие требования (1%) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. КПД электродинамических и сервоприводных стабилизаторов более 98%, а электронных (ступенчатых) 96%. ЗаключениеОбширность типов и модификаций стабилизаторов напряжения дало возможность применять стабилизаторы, как на производстве, так и в быту. Использование их позволило не только обеспечивать стабильное питание у электроприборов, но и уберечь большинство устройств от поломки. Список используемой литературыВ.В. Китаев и др "Электропитание устройств связи." Вересов Г.П. "Электропитание бытовой радиоэлектронной аппаратуры." Костиков В.Г. Парфенов Е.М. Шахнов В.А. "Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов Download 201 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling