Static Electricity 2000 Edition


Download 1.59 Mb.
Pdf ko'rish
bet88/129
Sana07.01.2023
Hajmi1.59 Mb.
#1081430
1   ...   84   85   86   87   88   89   90   91   ...   129
Bog'liq
NFPA 77 Static Electricity

A

(
)
+
=
FP
corr
°C
( )
C
0.03 760
B

(
)
+
=
FP
corr
°F
( )
F
0.06 760
B

(
)
+
=


77–
38
STATIC ELECTRICITY
2000 Edition
Explosion Prevention Systems. Of these methods, the most common
is to add a suitable inert gas, such as nitrogen, so that the resulting
concentration of oxygen is not sufficient to support a flame. A
safety factor is usually applied. For most flammable gases and
vapors, inerting typically requires reducing the oxygen concen-
tration to about 5 percent by volume.
A.7.3.1
The system of two layers having opposite net charge is
referred to as an electrical double layer. For conductive liquids
such as water, the diffuse layer is only a few molecules thick.
But for nonconductive liquids such as light petroleum distil-
lates, the layer could be many millimeters thick. Ionic species
present in liquids undergo charge separation at interfaces in a
manner that results in one sign of charge being more strongly
bound at the contacted surface than the other. This results in
a bound layer of liquid close to the contact surface. Farther
away from the contact surface is a “diffuse layer” that has a
charge of opposite polarity. Any process that shears the liquid,
such as pipe flow, moves the diffuse layer downstream with the
bulk of the liquid, while the bound layer charge relaxes to the
wall, provided the wall is grounded. This process, in effect,
allows the diffuse layer to result in charge accumulation in the
liquid. When small droplets having dimensions smaller than
the thickness of the double layer are formed, the formation of
the droplet can pinch off a net charge. This can result in
charged sprays and mists for both conductive and nonconduc-
tive liquids. The larger the area of the interface, the greater is
the rate of charging. Examples of such processes are fine filtra-
tion, agitation of two-phase systems such as water and oil, and
suspension of powder in liquid.
Streaming Current. The charges that are carried in the bulk of
the flowing liquid create a current referred to as a streaming cur-
rent. Although the charge is separated at the wall, flow mixes the
charge into the bulk of the liquid and a charge density mea-
sured in coulombs per cubic meter can be achieved. Streaming
current, in coulombs per second or amperes, is equal to the vol-
ume flow rate, in cubic meters per second, multiplied by the liq-
uid charge density, in coulombs per cubic meter.
A.7.3.2
Charge relaxation is characterized by a time constant,
which is the time required for a charge to dissipate to e
−1
(approximately 37 percent) of its original value, assuming that
charge relaxation follows exponential decay. This time con-
stant is determined from the following equation:
where:
τ = time constant
ε = dielectric constant for the liquid
ε
0
= 8.854 
× 10
−12
, permittivity of free space (farads per 
meter)
κ = liquid conductivity (picosiemens per meter)
Overall, the time constant provides some indication of a liq-
uid’s potential for accumulating a static electric charge. Expo-
nential, or “ohmic,” decay has been experimentally confirmed
for hydrocarbon liquids having conductivities of 1 pS/m or
greater and is described by the following equation:
where:
Q
t
= charge density (coulombs per cubic meter)

Download 1.59 Mb.

Do'stlaringiz bilan baham:
1   ...   84   85   86   87   88   89   90   91   ...   129




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling