Sun’iy intellektning bugungi holati va rivojlanish tendetsiyalari
Download 28.58 Kb.
|
1 2
Bog'liqSiddikov
Adabiyotlar:
Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Boston, MA: Harvard Business Review Press. https://www.perlego.com/book/837437/prediction-machines-the-simple-economics-of-artificial-intelligence-pdf Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete Problems in SI Safety. arXiv preprint arXiv:1606.06565. Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534. Chen, Y., Li, M., Li, X., Lin, Z., Luo, P., & Tong, X. (2018). Understanding and Mitigating the Tradeoff between Robustness and Accuracy. arXiv preprint arXiv:1811.09600. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. Marcus, G. (2018). Deep Learning: A Critical ApprSIsal. arXiv preprint arXiv:1801.00631. Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice Hall. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. New York, NY: Cambridge University Press. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489. Tegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intelligence. New York, NY: Vintage. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2018). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19. Zeng, J., Zhang, S., & Geng, X. (2018). An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. IEEE Transactions on Circuits and Systems for Video Technology, 30(11), 4011-4025. Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530. Zou, J., & Schiebinger, L. (2018). SI can be sexist and racist — it’s time to make it fSIr. Nature, 559(7714), 324-326. Khan, N., Raza, S. M., Khan, N., Nazir, M., & Ullah, I. (2020). The Role of Artificial Intelligence in the Current COVID-19 Pandemic. Frontiers in Technology, 2, 1-15. Kusiak, A. (2019). Smart manufacturing with artificial intelligence. Engineering, 5(2), 155-161. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). ExplSInable artificial intelligence (XSI): concepts, taxonomies, opportunities and challenges toward responsible SI. Information Fusion, 58, 82-115. Liu, B., Chen, Y., He, X., & Gao, J. (2020). Survey on deep learning for natural language processing. Neurocomputing, 399, 196-214. Gao, F., & Xu, L. (2019). A survey of deep learning-based fine-grSIned image classification. Chinese Journal of Electronics, 28(3), 445-456. Wang, Y., Yao, Z., Liu, Y., & Shen, H. T. (2019). Deep learning for multimedia signal processing. IEEE Signal Processing Magazine, 36(1), 20-30. Li, J., Lu, K., Mao, Z., & Zhang, Y. (2020). A Survey of Deep Learning-Based Computer Vision Techniques for Object Detection, Segmentation, and Recognition. IEEE Access, 8, 40998-41018. Download 28.58 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling