Sustainable Development Strategies for Product Innovation and Energy Efficiency


Download 171.22 Kb.
Pdf ko'rish
bet1/5
Sana21.09.2023
Hajmi171.22 Kb.
#1684112
  1   2   3   4   5
Bog'liq
Sustainable Development Strategies for P



Sustainable Development Strategies for Product
Innovation and Energy Efficiency
Wolfgang Gerstlberger,* Mette Præst Knudsen and Ian Stampe
Marketing and Management, University of Southern Denmark
ABSTRACT
The interaction between product innovation and companies’ activities aimed at improving
the energy efficiency of production facilities has been relatively little studied, but is of great
relevance to society and companies given the strong focus of governments on grand
challenges like climate change, green innovation technologies, and environmental problems
in general. This paper utilizes the 2009 European Manufacturing Survey for the Danish sub-
sample including 335 manufacturing firms. Through factor analysis, this paper confirms
three main areas of focus of new product development: efficiency considerations, market
attention, and greening of innovation. Logistic regression analysis demonstrates that while
market attention is important for the development of new products, green aspects of
innovation and efficiency considerations are important for production companies wanting
to improve their energy efficiency. When these models are combined, the results highlight
that energy efficiency moderates the effect of market attention to new product development.
This paper therefore finds that aligning product innovation and energy efficiency is a
complex and intertwined process – focusing on one may have indirect detrimental effects
on the other. These results point to the conclusion that researchers and practitioners in
innovation management have to consider more carefully the specificities and interactions
of different types of products and process innovations and their environmental implications,
and must formulate new, more sustainable managerial practices combining energy efficiency
and product innovation. Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Received 18 October 2012; revised 13 December 2012; accepted 31 December 2012
Keywords: green innovation; energy efficiency; manufacturing; performance; regression analysis; sustainability
Introduction
T
HIS PAPER DEMONSTRATES THAT PRODUCT INNOVATION AND PROCESSES RELATED TO ENHANCING ENERGY EFFICIENCY
within production facilities are different, but connected parts of the same managerial puzzle. This interaction
between different types of innovation, some with environmental implications, is still an understudied area
but is of great relevance to society and companies, given the strong political focus on grand challenges like
climate change, green technologies, and environmental challenges (European Commission – General Direction
Transport and Energy, 2011; Arundel & Kemp, 2009; OECD, 2009a; Smith et al., 2010).
*Correspondence to: Wolfgang Gerstlberger, Department of Marketing and Management, University of Southern Denmark, Campusvej
55, DK-5230 Odense M, Denmark. E-mail: woge@sam.sdu.dk
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Business Strategy and the Environment
Bus. Strat. Env. 23, 131–144 (2014)
Published online 11 July 2013 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/bse.1777


This paper studies innovation by focusing on some ‘green’ aspects that can be taken into account in firms’
product development activities, and examines whether these aspects increase the probability of introducing
new products to the market. An additional indicator of ‘greenness’, namely environmental management systems
(EMSs), is introduced to explain innovation. Obviously, this is a rather simplistic view of the extent of ‘greenness’
in a firm’s innovation activities, which theoretically ranges from ‘black’ to entirely ‘green’ (Dangelico &
Pontrandolfo, 2010). A basic premise is that consideration of additional environmental contents in ordinary
innovation activities requires additional firm and managerial resources compared with an ordinary product
innovation process (focusing, for example, only on market needs). However, if a firm focuses on energy efficiency
within its own production this may diminish the need for additional resources because resources are already
invested in other parts of the firm’s activities, although aimed at improvements in performance through cost
savings rather than innovation.
Unfortunately, any systematic knowledge of managerial practices and the link between product innovation,
green aspects of new products and energy efficiency is still rather scattered (Albino et al., 2009; Rennings &
Rammer, 2009).
One reason for this lack of evidence is centered on the firms’ own lack of managerial and cross-functional
understanding toward linking these aspects. A second reason lies in the broadness of the ‘environmental
implications’ of product and process innovation. These are hard to handle by firms in practice, especially for
small and medium-sized enterprises (SMEs) which often lack management systems or work with management
systems that are only developed to a basic level (Perez-Sanchez et al., 2003; Cassells & Lewis, 2011;
Bos-Brouwers, 2010).
Given the similar technological and organizational patterns of product innovation and energy efficiency measures
in production facilities, both of which aim to improve energy consumption, two scenarios for innovation strategies are
plausible:
1. A firm may choose to concentrate on product innovation or on energy efficiency to bundle limited internal and
external resources for innovation and production in a certain period of time.
2. A firm may choose to use resources simultaneously for both purposes because of the similarity of the resources
and competencies needed to support them.
These scenarios lead us to formulate the following research questions about which we will deliver quantitative
evidence:
1. Which production aspects determine energy efficiency in production activities?
2. Which production aspects determine product innovation?
3. How can
firms align product innovation with energy efficiency in production activities?
We used a large-scale survey carried out in Denmark to analyze these research questions. Three hundred
and thirty-five manufacturing firms in Denmark participated in the survey which was carried out in 2009.
We found that product innovation is determined by market-related aspects, whereas energy efficiency in
production activities is determined by ‘green’ aspects of innovation. We therefore conclude that Scenario 1
appears to be the most common. The contributions of the paper are therefore threefold as it offers: (i) a more
systematic structuring of the diffuse research and practice linking innovation and energy efficiency in
production; (ii) survey-based quantitative evidence for the weighting and interactions of different aspects of
innovation activities leading both to ‘ordinary’ and ‘green’ aspects of product innovation in smaller and
medium-sized production facilities; and (iii) identification of possible research hypotheses for future research
on the management of the interface between product innovation and process innovation aimed at improving
energy efficiency in production.
Before we proceed to the description of the applied methodology and data in the third section and to the
summary and discussion of the empirical findings in the fourth section, we use the two scenarios to identify
relevant literature on both product innovation with environmental implications and energy efficiency in production
processes. We conclude with some recommendations for managerial decision processes, which are derived from a
discussion of our findings and some implications for future research in the emerging area of alignment of product
and process innovation for energy efficiency.
132
W. Gerstlberger et al.
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


Product Innovation and Energy Efficiency – a Review
Delimitation and Definition of the Environmental Implications of Product Innovation
The literature does not offer one generally accepted concept of the environmental implications of product innovation,
as various works highlight diverse aspects while still being quite general (Carrillo-Hermosilla, del Rio Gonzalez, &
Könnöla, 2009). The concept of Kemp and Pearson (2008) implies that most innovations have both economic and
environmental effects (Kemp & Pearson, 2008), and its performance-based perspective leaves the authors unable to
establish a clear line of discrimination between ‘ordinary’ and ‘environmental’ product innovation.
In a similar way, Ottman et al. (2006, p. 24) define green products as those ‘products that strive to protect or
enhance the natural environment by conserving energy and/or resources and reducing or eliminating use of toxic
agents, pollution and waste’. These definitions stress the types of environmental focus in green products from
energy and resources to pollution, and waste. Further papers focus on the actual environmental impact, from the
relative improvement compared with other products (Peattie, 1995) to an absolute reduction in environmental
effects (Young et al., 2000; Biesiot & Noorman, 1999), although there is a recognition that products always have
an environmental impact regardless of the extent of greenness in the product (Dangelico & Pontrandolfo, 2010).
Pujari (2006, p. 77) defines the process of developing green products as a ‘new product development process
wherein companies explicitly undertake activities to achieve higher environmental (green) performance as well as
commercial performance’. This definition stresses the process of building new products considering both the
strategic perspective of improving the environmental performance of the product and the commercial or market
performance of the new product. Therefore, product innovations with environmental implications should fulfill
two goals simultaneously, namely improvement of environmental impact and obtaining commercial performance.
This follows the definition of Pujari (2006, p. 77) in stating that green innovations are new successful products,
processes, or services integrating one or more positive environmental aspects. A positive environmental aspect can,
for example, be an attempt to reduce the consumption of electricity in the production and/or consumer phase.
Consequently, a new product may contain one or more of such aspects, while simultaneously pursuing more
traditional characteristics like new design, new functionality, and new form.
Factors Supporting Environmental Considerations for Product Innovation
EMS is described as one of the most important internal factors supporting environmental considerations during prod-
uct innovation activities in production facilities (Morrow & Rondinelli, 2002; Triebswetter & Wackerbauer, 2008).
These studies show that EMSs strengthen both the environmental performance and the competitive advantages of
the investigated firms. Recent quantitative studies provide a more differentiated picture regarding interactions between
EMS and product innovation in production facilities, providing evidence for both significant and non-significant
environmental effects of an EMS on product innovation (Bisbe & Otley, 2004; Ziegler & Seijas Nogareda, 2009;
Henriques & Sadorsky, 2007; Wagner, 2008). The review therefore emphasizes the importance of EMSs or similar
systems for product innovation with environmental implications, although the results are mixed. Some additional
managerial activities are connected to the existence of an EMS and can have a positive environmental effect on either
product or process innovation (Wagner, 2007).
Energy Efficiency in Production Activities
Energy efficiency has again become one of the most important topics in economic and political debates during
the past few years. Accordingly, more energy-efficient production could lead to lasting reductions of production
costs and thus would contribute to an increase in the competitiveness of the firm (Pye & McKane, 2000).
Furthermore, improved energy efficiency at the plant as well as at firm level is considered by policy makers to be
an important approach for reducing national and global carbon emissions (Doris et al., 2009; European Commission
– General Direction Transport and Energy, 2011). It would therefore be fair to assume that energy efficiency should be
high on the managerial agenda in the coming years, especially for manufacturing firms with high energy usage.
133
Product Innovation and Energy Efficiency
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


A review of the literature identifies some internal factors like EMSs, cross-functional and intra-group coopera-
tion, research and development (R&D) investments, and technical capabilities as the most important internal
factors facilitating improved energy efficiency of firms’ production activities (Pye & McKane, 2000; del Río
González, 2005; Donnelly et al., 2006; Iraldo et al., 2009; Rennings & Rammer, 2009; Schleich, 2009; Velthuijsen,
1993; Carrillo-Hermosilla et al., 2010). Further external factors like supplier partnerships, obligatory environmental
standards for suppliers, and third-party certification have also been identified (Theyel, 2000; Donnelly et al., 2006;
Rennings & Rammer, 2009; Carrillo-Hermosilla et al., 2010; Lee & Kim, 2011). However, the question remains:
how do these internal and external factors relate to ‘green’ product innovation efforts?
Product Innovation with Environmental Implications
In the last two decades, research on product innovation with environmental implications in manufacturing firms
has presented a large number of case studies and surveys to achieve a better understanding of the ‘green’ aspects
of innovation management (de Mendoca & Baxter, 2001; Florida & Davidson, 2001; Morrow & Rondinelli, 2002;
Beise & Rennings, 2003; Donnelly et al., 2006; Smith, 2009; Frondel et al., 2008; Belin et al., 2009). The findings
of these studies also point to specific internal and external conditions of firms involved in innovation activities. The
identified internal factors of firms dedicated to ‘green’ products can be summarized as: R&D investments,
training programs for employees, a certified EMS and use of additional managerial tools (e.g. benchmarking,
appointment of an environmental officer), a strong vision (environmental policy), promoters and specific business
models and up front proficiency. The literature further mentions some external factors that support product innovation
that considers environmental implications like governmental legislation, the existence of lead markets, customer
demand, supplier and (lead) user partnership, cooperation along the whole supply chain, and participation in profes-
sional networks and associations (Brunnermeier & Cohen, 2003; Pujari et al., 2003; Pujari, 2006; Rehfeld et al.,
2007; Horbach, 2008; Belin et al., 2009). Clearly, there are overlaps between the identified internal and external factors
for energy efficiency and product innovation, respectively. The basic assumption of a linkage between these two
activities seems reasonable.
Alignment of Product Innovation with Energy Efficiency in Production Activities
Dangelico and Pontrandolfo (2010, p. 1610) list the characteristics of green products they have identified in nine
papers from the literature, and in eight of these energy efficiency is mentioned. However, despite these
apparently obvious synergies, process innovations aimed at improving energy efficiency of production facilities
are often analyzed separately without consideration of possible integration into the product innovation process.
To summarize, a firm focusing on saving energy to save costs in its own production phase may also strive to
implement energy-saving technologies in the development of new products. Pye and McKane (2000) stress that
energy efficiency may be a byproduct of productivity gains or productivity gains may be a byproduct of energy
efficiency. No matter the direction, management must understand all of the costs and benefits associated with an
investment in energy efficiency (Pye & McKane, 2000, p. 175). They continue to stress the potential benefits of
implementation of energy efficiency measures, one of which is improved product quality (e.g. improved customer
satisfaction), which directly links to product innovation. Also, Carrillo-Hermosilla et al. (2010) state that the
reduction of production costs or even improved energy efficiency may occur as side effects to the actual innovation
activities. No matter the direction of the causality, we expect that investments in energy efficiency will demand lower
resource investments in product innovation than in firms that are not involved in the implementation of energy
efficiency technologies for cost savings in manufacturing.
The literature review confirms that the research questions stated above are highly relevant, but have been
discussed only partly or even marginally and have rarely considered larger quantitative samples. In particular,
hypotheses that explicitly combine product innovation and activities improving the energy efficiency of production
facilities are missing in the current literature. In line with the review, the dependent and independent variables
of our analysis are derived from the different thematic sections of our literature review and presented in the
following sections.
134
W. Gerstlberger et al.
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


Methodology and Data
This section presents the survey used for data collection, the selection of the variables, and the methods used to test
the hypotheses.
Data Collection
There is a need for further quantitative evidence on the interaction of product innovation and the energy efficiency
of firms’ production facilities. Accordingly, this topic was included as a theme in the multi-topic and multi-country
European Manufacturing Survey. The European Manufacturing Survey is a European joint survey project carried
out in 12 European countries, Turkey, and Russia. The current paper is based on European Manufacturing Survey
data from Denmark collected in 2009 (April through June) using a web survey tool.
The survey is constructed with a core set of questions that are used by all countries, and an additional set of self-
selected questions added by the single countries. In Denmark, the financial crisis, energy efficiency, and
environmental aspects of product innovation were added to the survey. Since some of these questions are used
for the present paper, it is not possible to make cross-country comparisons with some of the other countries in
the European Manufacturing Survey.
The population of firms was delimited to manufacturing companies (NACE codes 15 to 37) with more than 20
employees (= 3068). The company names and addresses were drawn in February 2009 from a database building
on national statistical information. To identify the correct respondent in each firm, firms were contacted by tele-
phone. During the phone call, we received the respondent’s acceptance of participation and personal email address
upon receipt of acceptance. The callers were instructed to identify the person responsible for production activities
(i.e. production manager, production director, or executive production officer of the plant). If this person could
not be reached, the switchboard was asked to provide the email address of the correct respondent, and if this could
not be provided, a general company email was requested.
From the phone contacts, 1291 email addresses were recorded to which a personalized link to the electronic
survey was sent. In total, three email reminders were sent to the respondents, approximately 14 days apart. The
final response rate (= 335) calculated on the population was 10.9% (335/3068), and of the number of acceptances
to receive the survey the response rate was 25.9% (335/1291), both of which are acceptable. The sample has been
tested for representativeness using sector, region, and size (size was calculated based on both the number of
employees and turnover in the last year of accounting) and no significant differences were identified, indicating that
the study is representative of the population of firms in Danish manufacturing industries.
Selection of Variables
The first dependent variable (model 1) is ‘energy efficiency’ (= 230). Energy efficiency is measured on an ordinal
scale (values from 1 to 5), which requests that the firm estimates the efficiency of its own production in terms of
actual material and energy consumption compared with other factories within its industry. The scale goes from
1 to 7, where the former equals considerably less efficient (2.6%) to considerably more efficient (6.1%). The value
3 indicates equally efficient (50.4%). In the analyses, we code those firms that are more efficient (values 4 and 5)
versus the rest. This gives a dummy variable for energy-efficient firms.
The second dependent variable (model 2) is product innovation (= 334), which is measured on a binary scale
(yes, 50.6%, versus no, 49.4%). The question was framed as whether the
firm had introduced products (since 2006)
that were completely new to the factory or incorporated major technical changes. This formulation enables us to
interpret the dependent variable as real product innovations and not minor incremental changes, while also noting
that the products may differ substantially in their ecological components. Model 2 tests for the interaction effect
between energy efficiency and the product development features by using of the dependent variable from model 1.
Moderation, also known as interaction, is the effect of one independent variable on the relationship between another
independent variable and the dependent variable (Hair et al., 2006).
135
Product Innovation and Energy Efficiency
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


The main independent variables are the production aspects that are important for product development. The survey
investigated different production aspects: electrical consumption in the production phase, electrical consumption in the
user phase (end user), possibility of recirculation (e.g. renewable raw materials relevant for cradle-to-cradle product
development), maximizing product lifetime, avoiding harmful substances, fulfillment of quality standards, fulfillment
of consumer wishes, expected earnings and profit, functionality and user friendliness, and costs of R&D. Each of these
aspects is measured on a scale from not important (=1) to important (=5). These aspects are formulated in general terms,
and as the following tests will show, future research should focus on strengthening the items for further substantiating
tests. Since the literature does not clearly specify an underlying structure, principal components analysis is used to
explore a possible factor structure. To check the identified factors, principal axis factoring has also been tested, resulting
in the same factors. The item ‘electrical consumption in the user phase (end user)’ was excluded because of substantial
cross-loadings. In the following, the analyses utilize nine items.
The rotated factor solution results in three factors (total variance explained for three factors = 60%):
• Efficiency considerations for innovation, including compliance with quality standards, compliance with consumer
wishes, and expected earnings and profits. Cronbach’s alpha coefficient = 0.634.
• Market-related aspects, including functionality and user-friendliness, maximizing product lifetime and costs of
R&D. Cronbach’s alpha coefficient = 0.639.
• Green aspects of innovation, including consumption of electricity in production phase, use of renewable mate-
rials, and avoiding harmful substances. Cronbach’s alpha coefficient = 0.545.
The internal consistency for the green aspects of innovation is below the recommended level of 0.6 for new and
exploratory scales. To further analyze the components, we therefore applied confirmatory factor analysis (CFA)
using the AMOS graphical interface.
The results of the CFA for the three components are (> 250 and number of items = 9): comparative fit index
(CFI) = 0.930; root mean square error of approximation (RMSEA) =0.069, and chi-square/degrees of freedom
(CMIN/DF) = 2.58. These values indicate that the model fit is not very good, but is at an acceptable level (for rules
of thumb to assess model fit, we used Hair et al., 2006). Extracted variance for each of the components is as follows:
green aspects of innovation = 0.351; market aspects = 0.389; efficiency considerations = 0.367. These results indicate
that less than 50% of the variance in the items is explained by the latent structure. Each of the standardized regres-
sion weights is highly significant (<0.0001), and they are close, but not all are above the threshold value of 0.5.
A further independent variable is the use of an EMS. The survey assessed whether the firm has adopted one or
more of the following five EMSs: standardized system equivalent to EMAS II, equivalent to ISO 14000 or similar,
life-cycle evaluation according to ISO 14044, environmental standards or environmental accounting, and simplified tool
for environmental management. The firm could respond (yes/no) to each in terms of adoption of the technology. For
those technologies that were adopted, we then asked about the extent of used potential (scale: low, medium, and high).
The adoption of an EMS is expected to be related to the firm’s own usage of energy, but also its attention to environmen-
tal aspects of product development.
Because the literature systematically uses implementation of EMS as an indicator of the intensity of a firm’s
environmental innovation activities, different versions of the independent variable are tested. First, for firms that have
adopted at least one of the EMSs (= 122), we used a dummy variable that was coded with ‘1’ if the firm had
implemented at least one of the systems. Second, we tested the number of technologies that the firm had applied (range
from 1 to 5), and the extent of use (1 if medium or high use). These two are interpreted as the breadth of use (the former)
and the depth of use (the latter) of EMSs. Two hundred and thirteen companies did not adopt any of the systems and are
therefore coded with breadth = 0; 68 companies had applied at least one of the systems. Since the results from the
logistic regression models are insignificant for the second coding, we continue using the first version, i.e. whether
the firm has adopted a minimum of one of the systems.
The paper has also tested a number of control variables:
• Dummies for industries. We used the OECD categorization of three levels of high, medium, and low technology
to generate three dummies using low tech as baseline (OECD, 2009b).
• Formulation of clear and measurable energy reduction goals for the firm. This variable is coded so those firms
with reduction goals are coded as ‘1’. The main idea is that firms that have actually formulated goals (although they
136
W. Gerstlberger et al.
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


may not have achieved them) are more conscious about an environmental agenda and may therefore be more
energy efficient than their competitors.
• Adoption of new technologies in the production process. This variable is measured as ‘1’ if at least one of
13 predefined technologies was adopted and these were implemented in 2006 or later. The dummy repre-
sents a measure of process innovation.
• Adoption of new organizational concepts in the firm (organizational innovation). This variable is measured as ‘1’ if
at least one of 15 predefined organizational concepts is implemented in the firm, and again these should have been
implemented in 2006 or later. The dummy represents a measure of organizational innovation. Lenox and
Ehrenfield (1997) find that green products are more likely to be hampered by organizational barriers than techni-
cal barriers. Therefore, if firms implement organizational innovations in parallel with the development of new
products then we assume that these organizational barriers are diminished. Hence, we expect a positive effect
from this dummy.
All of the variables in Table 1 were applied in the logistic regression models. The results indicate that goals for
energy efficiency and the high-tech dummy are the most important dummies for the final models (see our interpre-
tation in the following section). Other control variables were tested (company size, industries with a high energy us-
age, customer orientation), but excluded from the final models.
Descriptives
The following tables provide some basic descriptive evidence, starting with the main variables for the regression models.
The main independent variables are distributed on firm size (Table 2 and 3). Small firms with fewer than 50 employees
are less likely to introduce new products (54.7% versus 49.2% on average), whereas the large firms are more innovative
than the average (28.2% versus 49.2%). This simply implies that the larger the firms grow in terms of number of
employees the more likely it is that the firms introduce new products.
On average, 65.3% of the companies are less efficient than the firms in their own industry, whereas 34.7% are
more efficient than the firms they compare themselves with. Looking at firm size, it can be seen that the group
of large firms with more than 250 employees contains fewer firms that are less efficient than those they compare
themselves with, whereas for the medium-sized firms the share is somewhat larger than the average share for all
firms. There is, however, not a direct relationship between company size and relative energy efficiency.
A difference of means test demonstrates that there are no significant differences between the three factors generated
by the production aspects measured on firm size, whereas firms in high-tech industries score significantly higher than
firms in other sector types (e.g. medium tech) on the efficiency factor and on the market factor (results not shown in the
tables). There are no significant differences in industry groups for the green factor. Therefore, it is not possible to
discern particular industries that are more prone to include environmental aspects in their innovation activities. The
correlation table (Table 4) does not identify any variables with correlations that are high enough to cause suspicion
of multicollinarity (coefficients above 0.4) and therefore all variables can be included in the regression analyses.
Mean
SD
n
New products introduced after 2006
1.51
0.501
334
Energy efficiency
1.35
0.477
230
Efficiency considerations for innovation (factor 1)
4.25
0.720
311
Market-oriented aspects (factor 2)
3.35
0.878
308
Green aspects of innovation (factor 3)
2.92
0.938
312
Management systems
0.364
0.482
335
Formulation of goals for reduction of energy consumption
1.27
0.446
334
Organizational innovation
0.506
0.501
334
Process innovation
0.299
0.458
335
Table 1.
Descriptive statistics for variables in models
SD, standard deviation.
137
Product Innovation and Energy Efficiency
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


Model Building
Since the dependent variable is binary and we need to include an interaction effect, the paper applies a hierarchical
logistic regression analysis. Logistic regression is a special form of regression analysis formulated to predict and
explain a binary categorical variable. The variables are entered stepwise, starting with the independent variables,
New products introduced since 2006
No
Yes
Total
Number of employees
(in intervals)
Fewer than 50 employees
Count
82
68
150
% within group
54.7%
45.3%
100.0%
50 to 249 employees
Count
67
72
139
% within group
48.2%
51.8%
100.0%
More than 250 employees
Count
9
23
32
% within group
28.1%
71.9%
100.0%
Total
Count
158
163
321
% within
49.2%
50.8%
100.0%
Table 2.
Product innovation distributed on firm size
Energy efficiency
As rest or less
efficient
More efficient than
others
Total
Number of
employees
(in intervals)
Fewer than 50 employees
Count
66
35
101
% within group
65.3%
34.7%
100.0%
50 to 249 employees
Count
65
33
98
% within group
66.3%
33.7%
100.0%
More than 250 employees
Count
14
9
23
% within group
60.9%
39.1%
100.0%
Total
Count
145
77
222
% within
65.3%
34.7%
100.0%
Table 3.
Energy efficiency distributed on firm size
Product
innov.
Energy
efficiency
Factor –
efficiency
Factor –
market
Factor –
green
EMS
Energy
goals
Organizational
innov.
Process
innov.
Product innov.
–0.14
0.030
0.184
0.030
0.053
0.146
0.111
0.110
Energy efficiency
0.839
0.200
0.094
0.215
0.120
0.125
–0.082
–0.093
Factor –
efficiency
0.596
0.003
0.409
0.313
0.142
0.138
0.026
–0.043
Factor – market
0.001
0.168
0.000
0.335
0.043
0.126
0.141
–0.131
Factor – green
0.556
0.001
0.000
0.000
0.244
0.201
0.026
–0.057
EMS
0.333
0.069
0.012
0.452
0.000
0.388
–0.109
–0.019
Energy goals
0.008
0.059
0.015
0.027
0.000
0.000
0.001
0.099
Organizational
innov.
0.043
0.216
0.653
0.014
0.654
0.047
0.982
0.018
Process innov.
0.045
0.160
0.454
0.022
0.316
0.386
0.070
0.739
Table 4.
Correlation table (level of significance in lower half of the table)
138
W. Gerstlberger et al.
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


then the moderator variable and interaction effects, and finally the controls. For the moderation effects, the moderator
is first entered followed by the interaction terms (in a block). To test the robustness of the models, forward, backward,
and enter are all used as methods and none of these was found to affect the model fit or the significance of the
single factors.
Findings
The principal components analysis confirmed three main areas of focus for new product development: market-related
aspects, efficiency considerations for innovation, and green aspects of innovation. Using these three factors as input
together with EMSs, the regression model is tested using the dependent variable energy efficiency (Model 1). Then, a
separate model is analyzed for product innovation using again the same independent variables combined with energy
efficiency as a moderator (Model 2).
The results of the table for energy efficiency (Table 5) demonstrate that the overall model fit improves with the
inclusion of the variables in the model, raising R
2
from 11.7 to 13.8, and the classification table shows that the overall
percentage of correct classifications is 70.9%. Furthermore, the Hosmer and Lemeshow test that must be insignificant
to ensure predictive accuracy based on a classification system to support R
2
behaves as expected (= 0.685).
The results for product innovation (Table 6) demonstrate that the overall model fit improves significantly with the
inclusion of the variables in the model, improving R
2
from 6.9 to 18.6, and the classification table shows that overall
percentage of correct classifications is 63.8%. Furthermore, the Hosmer and Lemeshow test that must be insignificant
to ensure predictive accuracy based on a classification system to support R
2
behaves as expected (= 0.410).
Model 1 examines research question 1: Which aspects of production determine energy efficiency in production
activities? The model specified that efficiency considerations including compliance to consumer wishes and quality
standards combined with an outlook for earnings and profits is positively and significantly related to a positive
energy efficiency in a firm’s production activities. The second factor on the green aspects of innovation including
Base
Independent variable
Control variables
Energy efficiency
Score
Significance
Score
Significance
Score
Significance
Constant
–0.630
0.000
***
–4.675
0.000
***
–4.739
0.000
***
Market aspects
–0.020
0.918
–0.048
0.817
Efficiency aspects
0.592
0.033
**
0.591
0.036
**
Green aspects
0.473
0.017
**
0.486
0.019
**
EMSs
0.329
0.291
0.170
0.617
Goals for energy efficiency
0.240
0.508
Organizational innovation
–0.360
0.250
Process innovation
–0.391
0.268
High tech
0.343
0.556
Medium tech
0.202
0.573
Low tech (base)
0.792
n
213
213
213
Model fit (R
2
) Nagelkerke
0.117
0.117
0.138
Change in R
2
0.021
Table 5.
Hierarchical regression model for energy efficiency
EMSs, environmental management systems.
***P < 0.001.
**P < 0.05.
*P < 0.1.
139
Product Innovation and Energy Efficiency
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


consumption of electricity in the production phase, avoidance of harmful substances, and use of renewable mate-
rials was also positively and significantly related to energy efficiency. The third factor on market-related aspects of
innovation was not significantly related to energy efficiency. The selected control variables are all insignificant in
this model. The green aspects of innovation therefore contribute to the determination of energy efficiency.
Model 2 examines research question 2: Which production aspects determine product innovation? Contrary to the
model for energy efficiency, product innovation is only determined by the market-related aspects of innovation and
not the green aspects of innovation and the efficiency considerations of innovation. A first finding is therefore that
the green aspects of innovation only contribute to the improvement of energy efficiency in production activities, but
do not contribute to product innovation. When energy efficiency is added to the model as an independent variable
then this variable is insignificant as a predictor itself until the variable is entered as a moderator (using the signif-
icant factor). Therefore, the self-reported comparative energy efficiency of the production companies has a moder-
ating effect on new product development. Since the moderator variable weakens the effect of the predictor variable
on product innovation, the moderation is a buffering interaction.
Firms that are setting explicit and measurable goals for energy reductions are more likely to introduce new
products. The interpretation of the variable is similar to the arguments put forth regarding EMSs, namely that
explicit consideration of the environmental effects of production and operations is driving additional thoughts on
the development of new or improvable products and production processes. However, the development and
implementation of organizational changes does not stimulate product innovation, as partly suggested in the
literature. Similarly, the control for process innovation was not significant. Finally, the industry dummies based
on high-/medium-/low-tech sectors showed a positive and significant effect for high-tech industries.
The implementation of EMSs that has been mentioned throughout the empirical literature was not significant in any
of the models, and is therefore neither assisting nor determining energy efficiency performance or product innovation.
In summary, the findings indicate that Danish manufacturing firms tend to focus on either energy efficiency in
their production facilities or product innovation and that they do not systematically link these aspects. These results
are in line with Scenario 1. Furthermore, we find evidence that a focus on product innovation is influenced by
Base
Independent variables
Interaction effects
Control variables
New products
Score
Significance
Score
Significance
Score
Significance
Score
Significance
Constant
0.103
0.451
–0.789
0.383
–3.738
0.043
*
–4.625
0.016
**
Market aspects
0.586
0.002
**
1.615
0.005
**
1.555
0.012
**
Efficiency aspects
–0.149
0.494
–0.232
0.312
–0.358
0.140
Green aspects
–0.193
0.287
–0.212
0.254
–0.153
0.440
EMSs
0.328
0.277
0.303
0.321
–0.073
0.834
Energy efficiency
a
2.269
0.068
*
2.431
0.062
*
Interaction effect with ‘market’
–0.680
0.057
*
–0.734
0.050
**
Goals for energy efficiency
0.880
0.018
**
Organizational innovation
0.432
0.156
Process innovation
0.182
0.586
High tech
1.536
0.034
**
Medium tech
–0.133
0.706
Low tech (base)
0.051
*
n
213
213
213
213
Model fit (R
2
) Nagelkerke
0.069
0.069
0.090
0.186
Change in R
2
0.021
0.096
Table 6.
Hierarchical regression model for product innovation
EMSs, environmental management systems.
***P < 0.001.
**P < 0.05.
*P < 0.1.
a
When energy efficiency is entered without the interaction, it is not significant (P = 0.925).
140
W. Gerstlberger et al.
Copyright © 2013 John Wiley & Sons, Ltd and ERP Environment
Bus. Strat. Env. 23, 131–144 (2014)
DOI: 10.1002/bse


factors distinct from the focus on energy efficiency in production activities. Hence, research question 3 ‘How can
firms align product innovation with energy efficiency in production activities?’ appears to relate to a non-trivial
interaction as the results point to a separation of product innovation and energy efficiency. Therefore, when we
combine product innovation (as a dependent variable) and energy efficiency aspects (as a moderator) in one model,
we notice that environmental product innovation and internal and external factors are relevant for shaping produc-
tion indirectly rather than directly.
Discussion and Need for Further Research
This paper has analyzed three research questions using survey-based data from Danish manufacturing firms:
1. Which production aspects determine energy efficiency in production activities?
2. Which production aspects determine product innovation?
3. To what extent can firms align product innovation with efficiency in production activities?
The results indicate that the innovation aspects of new products are separated in their ability to determine,
respectively, product innovation and energy efficiency in production activities. Market-related aspects toward
innovation, like focus on user-friendliness and cost of R&D, have a positive effect on product innovation, but not
on energy efficiency. Efficiency considerations for innovation and green aspects of innovation determine energy
efficiency performance, but not product innovation. This implies that if firms focus on the ‘green’ aspects of
innovation such a focus will decrease their likelihood of product innovation, or in short, focusing on green aspects
like avoiding harmful substances comes at the cost of lower likelihood of innovating in general, although the focus
will positively influence the firm’s own energy efficiency efforts in production. More indirectly, the formulation of
goals for energy consumption has a positive effect on product innovation. Therefore, product innovation and energy

Download 171.22 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling