Ta`rif: Agar f’(X)-xosila funksiya -nuqtada hosilaga EGA bo`lsa, uni f(X) funksiyaning nuqtadagi ikkinchi tartibli hosilasi
Download 52.78 Kb.
|
1 2
Bog'liq22-AMALIY MASHG`ULOT
- Bu sahifa navigatsiya:
- 4-eslatma
dny=d(dn-1y) kabi yoziladi. 5-misol. y=e4x funksiya uchun d3y-differensial topilsin. Yechish: d3y=(e4x)’’’dx3, , (e4x)’=e4x (4x)’=4 e4x, (e4x)”= (4 e4x)’=4 e4x=16e4x, (e4x)’’’=(16e4x)’=16(e4x)’=16 e4x 4=16 4x=64 4x. Demak, d3y=(e4x)’’’dx3=64e4xdx3 kabi bo`ladi. 4-eslatma: Differensiallashning sodda qoidalari quyidagicha yoziladi.
a) dn(cf(x))=cdnf(x) , b) dn(f(x)+g(x))=dnf(x)±dng(x) , d) dn(f(x) =dnf(x) +cndn-1f(x) +cn2dn-2f(x)d2g(x)+ + ... +cnkdn-kf(x) dkg(x)+ ... +f(x) dng(x). 6-misol: cos4x bo`lsa, d2y-topilsin. Yechilishi: dy=d( + cos4x)= d ) +d(cos4x)= )’dx+(cos4x)’dx= dx+ +(-sin4x) =(2x -4sin4x)dx , d2y=d(dy)=d[(2x -4sin4x)dx]=d [2x - 4sin4x]dx=[d(2x - d(4sin4x)]dx= =[(2x dx –(4sin4x)’dx]dx=[2(x ’dx-4(sin4x)’dx]dx= =[2(1 +x ) - 4 cos4x =(2 +4x2 -16cos4x)dx2 7-misol: y=x2e2x uchun d2y-topilsin. dy=d(x2e2x))’=e2xd(x2)+x2d(e2x)=(x2)’dx e2x+(e2x)’dx x2=2xdx e2x+2e2x dx x2= =(2xe2z+2x2e2x)dx , d2y=d(dy)=d[2xe2x+2x2e2x]dx=[d(2xe2x)+d(2x2e2x)]dx=[2d(xe2x)+2d(x2e2x)]dx= =2[(x e2x)’dx+(x2e2x)’dx]dx=2[1 e2x+x e2x 2)dx+(2 xe2x+x2 e2x 2)dx]dx= =2[e2x+2x e2x+2x e2x+2x2 e2x]dx =2e2x[1+4x+2x2]dx2 (bu yerda dx-o`zgarmas ko`paytuvchi deb qaraladi). Endi murakkab funksiyani yuqori tartibli hosilasiga misol qaraymiz. 8-misol.u=f(x)=e2x , y=F(u)=u4 bo`lsa, y’, y”- lar topilsin. Yechilishi: 1) Ravshanki, yx’=F’(u ux’ yx’=(u4)u’ (e2x )x’=4u3 e2x 2=4(e2x)3 e2x 2=8 e6x e2x=8e8x. 2)yxx”=F”(f(x)) f’2(x)+F’(f(x)) f”(x)=Fuu”(u) (ux’)2+Fu’(u) uxx”=12u2 (2e2x)2+4u3 4e2x= =12 (e2x)2 4 e4x+4 (e2x)3 4 e2x=12e4x 4 e4x+4 e6x 4 e2x=48 e8x+16 e8x=64 e8x kabi bo`ladi. Mustaqil yechish uchun uyga vazifa. 1) y=cos2x bo`lsa, yx’’’-topilsin. 2) y=x6-4x3+4 bo`lsa, yІv(1)-topilsin. 3)y=arctgx bo`lsa, y”(1)- topilsin. 4) y= bo`lsa, yv(x)-topilsin. 5) y= bo`lsa, yv(x)-topilsin. 6) y=x3 lnx bo`lsa, yІv(x)-topilsin. 7) y=(1+x2)arctgx bo`lsa, y”(x)- topilsin. 8) y=xx bo`lsa, y”(x)- topilsin. 9) y=x lnx bo`lsa, y(x)(n)- topilsin. 10) y= bo`lsa, y(n)(x)-topilsin. 11) y= bo`lsa d2y topilsin. 12) bo`lsa, d2y topilsin. 13) y= sinx bo`lsa d2y topilsin. 14) u=f(x)=2x , y=F(u)=lnu bo`lsa , y’ , y” – lar topilsin Download 52.78 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling