Tekislikda va fazoda kordinatalar metodi tekislikdagi nuqtaning koordinatalari fazoda to‘G‘ri burchakli koordinatalar sistemasi
Tekislikdagi nuqtaning koordinatalari
Download 141.62 Kb.
|
TEKISLIKDA VA FAZODA KOORDINATALAR METODI
Tekislikdagi nuqtaning koordinatalari
Ta’rif: Tekislikda to‘g‘ri burchakli koordinatalar sistemasi berilgan deyiladi, agar ikkita o‘zaro perpendikulyar o‘q, ularni kesishish nuqtasi y O (sanoq boshi) va masshtab birligi berilganbo‘lsa. Odatda bu o‘qlarni biri gorizontal,M ikkinchisi vertikal joylashgan bo‘ladi.( R. Dekart, fransuz olimi (1596-1650))II I gorizantal o‘qni abssissalar o‘qi (Ox), x vertikal o‘qni ordinatalar (Oy) o‘qi deyiladi. III IV ch-1Bu o‘qlarni ikkalasi koordinata o‘qlari, ularning kesishgan nuqtasi (sanoq boshi) koordinata boshi deyiladi. Koordinatalar boshi OX o‘q uchun ham, OY o‘q uchun ham sanoq boshlanadigan nuqta hisoblanadi. O‘qlarni har birida musbat yo‘nalishlar strelkalar bilan ko‘rsatiladi. Nuqtaning tekislikdagi o‘rni anna shu koordinatalar sistemasiga nisbatan aniqlanadi.Tekislikda biror M nuqtaning (ch-1) o‘rini aniqlash uchun bu nuqtadan, OX va OY o‘qlariga perpendikulyar tushiramiz va koordinati o‘qlari bilan kesishish nuqtalarini R va Q bilan belgilaymiz. M nuqta berilgan bo‘lsa, ravshanki R va Q nuqtalar aniqlanadi va R,Q ma’lum bo‘lsa, M nuqtani o‘rnini aniqlash oson. Ma’lumki, kesmalarning uzunliklari biror uzunlik birligi bilan o‘lchanadi. SHu tufayli koordinata o‘qlarida masshtab birligi tanlab olingan bo‘ladi: x=or, u=oQ deb belgilasak, bu sonlar yordamida tekislikda faqat bitta M nuqtani topamiz; x soni M nuqtani abssissasi, u soni esa uni ordinatasi deyiladi va M(x;u) ko‘rinishda yoziladi. Masalan M (4;-5) bo‘lsa x=4, u=-5 ekanini bildiradi. Nuqta berilgan deymiz, agar uning koordinatalari berilgan bo‘lsa, koordinata o‘qlari tekislikni to‘rt bo‘lakka ajratadi, bu bo‘laklar choraklar deyiladi (ch-1). Fazoda to‘g‘ri burchakli koordinatalar sistemasi Fazoda nuqtaning o‘rnini aniqlash uchun bir-biri bilan to‘g‘ri burchak hosil qilib kesishadigan uchta H,Q,R tekisliklarni qaraymiz. Bu tekisliklarni koordinata tekisliklari deb ataladi. R,Q,R tekisliklar OX,OY,OZ to‘g‘ri chiziqlar bo‘yicha kesishadi, bu chiziqlar koordinata o‘qlari deyiladi va OX abssissa o‘qi, OY ordinati o‘qi va OZ applikatalar o‘qi deb ataladi. Bu uch o‘qning kesishgannuqtasi O koordinatalar boshi deyiladi. Koordinata tekisliklari o‘zaro kesishib fazoni sakkiz qismga (bo‘lakka) ajratadi. Bu bo‘laklar oktantlar deyiladi. Bu keltirilgan koordinata sistemasi fazoda to‘g‘ri burchakli Dekart koordinata sistemasi deyiladi. Fazoda to‘g‘ri burchakli Dekart koordinata sistemasini qisqacha quyidagicha ta’riflash mumkin. Ta’rif: Fazoda to‘g‘ri burchakli Dekart koordinatalar sistemasi berilgan deyiladi, agar 3ta o‘zaro perpendikulyar uq, ularni kesishgan nuqtasi O va masshtab birligi berilgan bo‘lsa. Fazoda har qanday nuqtaning o‘rni koordinata sistemasiga nisbatan 3ta son bilan aniqlanadi. Fazoda biror M nuqta va ma’lum masshtab birligi berilgan bo‘lsin (ch-4). M nuqtadan koordinata o‘qlariga perpendikulyarlar tushiramiz va ularni koordinata o‘qlari bilan kesishgan nuqtalarini R,Q,S bilan belgilaymiz. Agar Z R,Q,S nuqtalar berilgan bo‘lsa S V M nuqtani topish mumkin. De- mak M nuqtani fazodagi vaziya- tini X=OR, Y=OQ va Z=OS о S M miqdorlar belgilaydi va ular U M nuqtaning koordinatlari, Q aniqrog‘i x M nuqtaning abssissasi, U ordinatasi va R A Z aplekatasi deyladi. Agar X fazoda biror, M (x;u;z) nuqta berilgan bo‘lsa, uni fazodagi vaziyatini quyidagicha aniqlash mumkin (ch-5) OX o‘qidan x ni topamiz, OY o‘qidan uni topamiz. R nuqtadan OY o‘qiga parallel qilib, Q nuqtadan OX o‘qiga parallel qilib to‘g‘ri chiziqlar o‘tkazamiz va ularni kesishgan nuqtasini Q1 bilan belgilaymiz. O1 nuqtadan OZ o‘qiga parallel qilib uzuq chiziq o‘tkazamiz. SHundan keyin z ni ishorasiga qarab, agar z > 0, bo‘lsa O1dan yuqoriga qarab Z uzunliga z bo‘lgan O1Z va Z < 0 bo‘lsa O1 dan pastga qarab uzunligi O1Z . Z kesmi ajratamiz. O1Z kesmani oxirgi Q y nuqtasi biz izlayotgan M nuqtadir. O M (5;6;3) nuqtani yasaylik: xq5 va uq6 x x kesmalarni topib, ularni oxiridan R O1 OX va OY o‘qiga parallel qilib uzuq x y chiziqlar o‘tkazamiz, so‘ngri ularni r-5 kesishish nuqtasi O1dan OZ o‘qiga parallel qilib uzuq chiziqlar o‘tkazamiz. Z=3>0, bo‘lganidi. O1 nuqtadan yuqorigi qarab 3 birlik o‘lchaymiz, shu kesmani oxiri, ya’ni O1M kesma hosil bo‘ladi. Ana shu topilgan M nuqta biz izlayotgan nuqtadir Takidlaymizki, M1 (x;u) nuqta tekislikda, M2 (x;u;z) nuqta fazoda berilgan bo‘lsa. M1ni qaysi chorakda, M2 esa qaysi aktantda ekanligini quyidagi j-1 va j-2 jadvaldan foydalanib aniqlash mumkin. uqR M Q u o x=5 x=5 x O1 у=6 ch-6 Октантлар х;у;z) нуқта коор иш Х У Z I х>0 y>0 z>0 II x<0 y>0 z>0 III x<0 y<0 z>0 IV x>0 y<0 z>0 V х>0 y>0 z<0 VI x<0 y>0 z<0 VII x<0 y<0 z<0 VIII x>0 y<0 z<0 z Чораклар (х;у) нукта коор иш Х у I х>0 y>0 II x<0 y>0 III x<0 y<0 IV x>0 y<0 0>0>0>0>0>0>0>0>0>0>0>0>0>0>0>0> Download 141.62 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling