Тема : Понятие функции. Предел функции. Основные теоремы о пределах. Некоторые замечательные пределы. Непрерывность функции. Точки разрыва функции и их типы
Download 24.95 Kb.
|
ponyatiye funksii (9)
- Bu sahifa navigatsiya:
- Замечательные пределы
- Непрерывная функция
3 Теоремы о пределах
1.Бесконечно большие и бесконечно малые. Функция f(x) стремится к бесконечности при x стремящимся к a, если для любого M > 0 можно указать такое значение d > 0, что для всех x удовлетворяющих неравенству |x-a| < d имеет место неравенство |f(x)| > M. limx a=Ґ 2.Функция ограниченная при x® a. 3.Функция ограниченная при x-> Ґ. 4.Теорема. Если limx® a f(x)=b, то функция f(x) ограниченная при x-> a. 5.Бесконечно малые и их свойства. limx® a a(x)=0 Теорема. 1. Если f(x)=b+a, где a - б.м. при x® a, то limx® a f(x)=b и обратно, если limx® a f(x)=b, то можно записать f(x)=b+a(x). Теорема. 2. Если limx® a a(x)=0 и a(x) № 0, то 1/a® Ґ. Теорема. 3. Сумма конечного числа б.м. есть б.м. Теорема. 4. Произведение б.м. на ограниченную функцию есть б.м. 6. Теоремы о пределах. Теорема. 1. Предел суммы есть сумма пределов. Теорема. 2. Предел произведения есть произведение пределов. Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0). Теорема. 4. Если u(x) Ј z(x) Ј v(x), и limx® a u(x)=limx® a v(x)=b, то limx® a z(x)=b. ("Теорема о двух милиционерах"). 7. Первый замечательный предел. 0.5sin(x) < 0.5x < 0.5tg(x) Lim x-> sin(x) =1 X 8. Второй замечательный предел. Переменная величина при n -> Ґ имеет предел, заключенный между 2 и 3. Замечательные пределы Замеча́тельные преде́лы — термины, использующиеся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела Непрерывная функция Непрерывная функция — функция, которая меняется без мгновенных «скачков» (называемых разрывами), то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции. График непрерывной функции является непрерывной линией. Непрерывная функция, вообще говоря, синоним понятия непрерывное отображение, тем не менее чаще всего этот термин используется в более узком смысле — для отображений между числовыми пространствами, например, на вещественной прямой. Эта статья посвящена именно непрерывным функциям, определённым на подмножестве вещественных чисел и принимающим вещественные значения. Вариацию этого понятия для функций комплексной переменной см. в статье Комплексный анализ. Точки разрыва Если условие, входящее в определение непрерывности функции, в некоторой точке нарушается, то говорят, что рассматриваемая функция терпит в данной точке разрыв. Другими словами, если A — значение функции f в точке a, то предел такой функции (если он существует) не совпадает с A. На языке окрестностей условие разрывности функции f в точке a получается отрицанием условия непрерывности рассматриваемой функции в данной точке, а именно: существует такая окрестность точки A области значений функции f, что как бы мы близко не подходили к точке a области определения функции f, всегда найдутся такие точки, чьи образы будут за пределами окрестности точки A. Download 24.95 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling