Температурная зависимость проводимости собственных полупроводников
Download 259.91 Kb.
|
Документ Microsoft Word
Квантовые числа
Наряду с таким набором квантовых чисел, состояние нуклона в ядре можно также характеризовать другим набором квантовых чисел n, l, j, jz. Выбор набора квантовых чисел определяется удобством описания квантовой системы. Существование сохраняющихся (неизменных во времени) физических величин для данной системы тесно связано со свойствами симметрии этой системы. Так, если изолированная система не изменяется при произвольных поворотах, то у неё сохраняется орбитальный момент количества движения. Это имеет место для атома водорода, в котором электрон движется в сферически симметричном кулоновском потенциале ядра и поэтому характеризуется неизменным квантовым числом l. Внешнее возмущение может нарушать симметрию системы, что приводит к изменению самих квантовых чисел. Фотон, поглощенный атомом водорода, может перевести электрон в другое состояние с другими значениями квантовых чисел. В таблице приведены некоторые квантовые числа, используемые для описания атомных и ядерных состояний. Помимо квантовых чисел, отражающих пространственно-временную симметрию микросистемы, существенную роль играют так называемые внутренние квантовые числа частиц. Ряд из них, такие как спин и электрический заряд, сохраняются во всех взаимодействиях, другие в некоторых взаимодействиях не сохраняются. Так квантовое число странность, сохраняющееся в сильном и электромагнитном взаимодействиях, не сохраняется в слабом взаимодействии, что отражает разную природу этих взаимодействий. Атомное ядро в каждом состоянии характеризуется полным моментом количества движения . Этот момент в системе покоя ядра называется спином ядра. Для ядра выполняются следующие правила: а) A - чётно J = n (n = 0, 1, 2, 3,...), т. е. целое; б) A – нечётно J = n + 1/2, т. е. полуцелое. Кроме того, экспериментально установлено ещё одно правило: у чётно-чётных ядер в основном состоянии Jgs = 0. Это указывает на взаимную компенсацию моментов нуклонов в основном состоянии ядра – особое свойство межнуклонного взаимодействия. Инвариантность системы (гамильтониана ) относительно пространственного отражения – инверсии (замены → - ) приводит к закону сохранения чётности и квантовому числу чётности Р. Это означает, что ядерный гамильтониан обладает соответствующей симметрией. Действительно, ядро существует благодаря сильному взаимодействию между нуклонами. Кроме того, существенную роль в ядрах играет и электромагнитное взаимодействие. Оба этих типа взаимодействий инвариантны к пространственной инверсии. Это означает что ядерные состояния должны характеризоваться определенным значением четности Р, т. е. быть либо четными (Р = +1), либо нечетными (Р = -1). Однако, между нуклонами в ядре действуют и не сохраняющие чётность слабые силы. Следствием этого является то, что к состоянию с данной четностью добавляется (обычно незначительная) примесь состояния с противоположной четностью. Типичная величина такой примеси в ядерных состояниях всего 10-6-10-7 и в подавляющем числе случаев может не учитываться. Четность ядра Р как системы нуклонов может быть представлена как произведение четностей отдельных нуклонов pi: Р = p1·p2·...·pA·, причем четность нуклона pi в центральном поле зависит от орбитального момента нуклона , где πi - внутренняя четность нуклона, равная +1. Поэтому четность ядра в сферически симметричном состоянии может быть представлена как произведение орбитальных четностей нуклонов в этом состоянии: На схемах ядерных уровней обычно указывают энергию, спин и чётность каждого уровня. Спин указывается числом, а чётность знаком плюс для чётных и минус для нечётных уровней. Этот знак ставится справа сверху от числа, указывающего спин. Например, символ 1/2+ обозначает чётный уровень со спином 1/2, а символ 3- обозначает нечётный уровень со спином 3. Download 259.91 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling