Teng kuchli formulalar. Tavtologiya va ziddiyatlar


Download 29.56 Kb.
Sana03.01.2023
Hajmi29.56 Kb.
#1076046
Bog'liq
Rasulev Dilmurot M1


O‘ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARI
VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI
MUHAMMAD AL-XORAZMIY NOMIDAGI
TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI
Algoritmlash va matematik modellashtirish kafedrasi

Diskret tuzilmalari fanidan
MUSTAQIL ISH
MAVZU: Teng kuchli formulalar. Tavtologiya va ziddiyatlar
Bajardi:072-21 guruh talabasi
Rasulev Dilmurot
Toshkent – 2022
Reja:

  1. Normal formalar.

  2. Mulohazalar hisobini qurish.

  3. Teng kuchli formulalar

  4. Xulosa.


1. Mulohazalar algebrasi.Mulohazalar ustida mantiq amallari.
I.1.1 – ta’rif. Rost yoki yolg‘onligini bir qiymatli aniqash mumkin bo‘lgan darak gap mulohaza deyiladi.
« sayin – daraxt », « Negrlar – oq tanli odamlar »,
« 5 > 2 », « Bugun – 5 – may » kabi gaplar mulohazalarga misol bo‘la oladilar. Lekin щar qanday gap ham mulohaza bo‘la olmaydi, masalan, « YAshasin O‘zbekiston yoshlari! », « Sen nechanchi kursda o‘qiysan? » kabi gaplar mulohazalar emas, chunki ular darak gaplar emas.
Demak, biror bir gap mulohaza bo‘lishi uchun, u albatta darak gap bo‘lishi va rost yoki yolg‘onligi bir qiymatli aniqlanishi shart.
Ûzbek tilidagi barcha mulohazalar to‘plamini orqali belgilaylik. to‘plamning elementlarini lotin alifbosining bosmacha, indeksli yoki indekssiz bosh щarflari bilan belgilashga kelishib olamiz. YA’ni A , V , S , . . . , A 1,
A 2 , . . . , A n - mulohazalardir. A mulohaza rost bo‘lsa, unga 1 ni, yolg‘on bo‘lsa, 0 ni mosqo`yamiz.
I.1.2 – ta’rif. A va V mulohazalarning kon’yunksiyasi deb, A va V mulohazalar rost bo‘lgandagina rost, qolgan hollarda yolg‘on bo‘ladigan A V mulohazaga aytiladi.

Mulohazalar kon’yunksiyasi mantiqiy ko‘paytirish deb ham ataladi va A · V yoki A & V kabi belgilanishi mumkin.
I.1.3 - ta’rif. A va V mulohazalar diz’yunksiyasi deb, A va V mulohazalarning ikkalasi ham yolg‘on bo‘lgandagina yolg‘on, qolgan hollarda rost bo‘ladigan A Ú V mulohazaga aytiladi.
Mulohazalar diz’yunksiyasi mantiqiy qo‘shish deb ham yuritiladi va A + V kabi belgilanishi ham mumkin.

I.1.4 - ta’rif. A mulohaza rost bo‘lganda yolg‘on, yolg‘on bo‘lganda rost bo‘ladigan ù A mulohaza A mulohazaning inkori deyiladi.

A mulohazaning inkori `A orqali belgilanishi ham mumkin.
Mulohazalar ustida bajariladigan amallar rostlik jadvali deb ataladigan jadvallar yordamida ham berilishi mumkin. YUQorida ta’riflangan amallar rostlik jadvali quyidagi ko‘rinishda bo‘ladi :


A

V

A Ù V

A Ú V

ù A

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

0

0

0

0

1

Bundan tashqari yana bir qancha amallar, ya’ni :
Þ - implikatsiya yoki mantiqiy xulosa,
Û yoki ~- ekvivalensiya yoki mantiqiy teng kuchlilik,
ï - SHefer shtrixi,
¯ - Pirs strelkasi,
Å - qat’iy diz’yunksiya, ya’ni 2 modul bo‘yicha qo‘shish amallari quyidagi jadval orqali beriladi:


A

V

A Þ V

A Û V

A ô V

A ¯ V

A Å V

1

1

1

1

0

0

0

1

0

0

0

1

0

1

0

1

1

0

1

0

1

0

0

1

1

1

1

0

I.2. Mulohazalar algebrasi. Mulhozalar algebrasi alfaviti, formula tushunchasi.
I.2.1 - ta’rif. < M , ù , Ù , Ú ,Þ , Û > - universal algebra mulohazalar algebrasi deyiladi.

Mulohazalar algebrasini qisqacha MA deb belgilaymiz.
MA ning alfaviti quyidagilardan iborat :
A , V , S , . . . – mulohazalarni belgilash uchun ishlatiladigan xarflar;
ù , Ù , Ú , Þ , Û - mantiq amallarini belgilash uchun ishlatiladigan belgilar;
( , ) - chap va o‘ng qavslar .
Mulohazalar algebrasining asosiy tushunchalaridan biri formula tushunchasidir. Unga induktiv ta’rif beramiz.

I.2.2 - ta’rif. 1). Xar bir mulohaza formuladir.
2). Agar Á va  lar formulalar bo‘lsa, u holda
( ù Á) , ( Á Ù Â ) , ( Á Ú Â ) , ( Á Þ Â ) , ( Á Û Â ) lar ham formulalardir.
3). 1) va 2) lar yordamida щosil qilingan ifodalargina formulalardir.

Masalan, A , V , S lar 1) ga asosan formulalar; ( ù V ),
( A Þ ( ù V )), ( ( ( A Þ ( ù V )) Þ A ) Ù S ) lar 2) ga asosan formulalardir.
Formulalarning tarkibidagi qavslarni kamaytirish ma=sadida mantiq amallarining bajarilish tartibini
ù , Ù , Ú , Þ , Û deb belgilab olamiz. Demak, qavslar bo‘lmaganda avval ù , keyin Ù va щ.k. amallar bajariladi. Bundan tashqari tash=i qavslarni ham extiyoj bo‘lmaganda tashlab yuboramiz. Bunday ûzgartirishlardan keyin
( ( A Ù V ) Ú ( (ù A ) Þ S ) ) formulani A Ù V Ú (ù A Þ S ) ko‘rinishda ¸zishimiz mumkin bo‘ladi.

I.2.3 - ta’rif. Formulada qatnashgan mantiq amallari soni formulaning rangi deyiladi.

YUQorida keltirilgan formulaning rangi 4 ga teng.

I.2.4 - ta’rif. 1. Á formula - mulohaza bo‘lsa , uning formulaosti faqat uning ûzidan iborat.
Agar formulaning ko‘rinishi Á *  dan iborat bo‘lsa, u holda uning formulaostilari Á ,  , Á *  , hamda Á va  larning barcha formulaostilaridan iborat bo‘ladi. Bu erda * - Ù , Ú , Þ , Û amallaridan biri.
Agar formulaning ko‘rinishi ù Á bo‘lsa, uning formulaostilari Á formula, Á formulaning barcha formulaostilari va ù Á ning ûzidan iborat.
Boshqa formulaostilari yo‘q.
Teng kuchli formulalar. Tavtologiya – mantiq qonunii.
I.3.1 - ta’rif. MA ning Á va  formulalari berilgan bo‘lib, bu formulalar tarkibiga kirgan barcha mulohazalar A1 ,. . ., Am - lardan iborat bo‘lsin. Agar A1 , . . . , A m mulohazalarning barcha qiymatlar tizimlari ( i1, . . . , im ) lar uchun Á va  formulalar bir щil qiymatlar qabul qilsalar, u holda, bu formulalar teng kuchli formulalar deyiladi.
Á va  formulalarning teng kuchliligi Á º  ko‘rinishda ifodalanadi.
I.3.2 - ta’rif. Mulohazalar algebrasining
Á( A1,. . . , An) formulasi A1 ,. . . , An mulohazalarning barcha qiymattizimi ( i1, . . . , in) uchun 1 qiymat qabul qilsa, aynan rost formula yoki tavtologiya yoki mantiq qonunii deyiladi.
Aynan rost formulani qisqacha AR deb belgilaymiz.
I.3.3 - ta’rif. MA ning Á ( A 1, . . . , A n ) formulasi
A1 ,. . . , An mulohazalarning barcha qiymattizimi
( i1 , . . . , in ) lar uchun 0 qiymat qabul qilsa, aynan yolg‘on yoki ziddiyat deyiladi
I.3.4 - ta’rif. Agar mulohazalar algebrasining
Á (A1 , . . . , An) formulasi A1 , . . . , An larning kamida bitta ( i1 , . . . , in ) qiymattizimida 1 ga teng qiymat qabul qilsa, u holda bu formula bajariluvchi formula deyiladi.
I.3.5 - teorema. Mulohazalar algebrasining Á va  formulalari teng kuchli formulalar bo‘lishi uchun, Á Û Â formula aynan rost formula bo‘lishi zarur va etarli.
Isbot. Á º  bo‘lsin. U holda Á va  formulalarga kirgan barcha propozitsional o‘zgaruvchilarning barcha qiymattizimlarida Á va  formulalar bir xil qiymatlar qabul qiladilar. YA’ni, Á Û Â = 1 bo‘ladi.
Aksincha, Á Û Â = 1 bo‘lsa, Á = 1 bo‘lganda  = 1 va
Á = 0 bo‘lganda  = 0 bo‘ladi.
I.3.6. Asosiy teng kuchli formulalar.
A Ù A º A (kon’yunksiyaning idempotentlik qonunii).
A Ú A º A (diz’yunksiyaning idempotentlik qonunii).
A Ù 1 º A .
A Ú 1 º 1.
A Ù 0 º 0 .
A Ú 0 º A .
A Ú ù A º 1 – uchinchisini inkor qilish qonunii.
A Ù ù A º 0 - ziddiyatga keltirish qonunii.
ù ( ù A ) º A - qo‘sh inkor qonunii.
A Ù ( V Ú A ) º A .
A Ú ( V Ù A ) º A .
A Û V º ( A Þ V ) Ù ( V Þ A ).
A Þ V º ù A Ú V .
ù ( A Ù V ) º ù A Ú ù V .
ù ( A Ú V ) º ù A Ù ù V .
A Ù V º ù ( ù A Ù ù V ).
A Ú V º ù ( ù A Ù ù V ).
A Ù V º V Ù A – kon’yunksiyaning kommutativlik qonunii.
A Ú V º V Ú A – diz’yunksiyaning kommutativlik qonunii.
A Ù ( V Ú S ) º ( A Ù V ) Ú ( A Ù S ) - Ù ning Ú ga nisbatan distributivlik qonunii.
A Ú ( V Ù S ) º ( A Ú V ) Ù ( A Ú S ) - Ú ning Ù ga nisbatan distributivlik qonunii.
A Ù ( V Ù S ) º ( A Ù V ) Ù S – kon’yunksiyaning assotsiativlik qonunii.
A Ú ( V Ú S ) º ( A Ú V ) Ú S – diz’yunksiyaning assotsiativlik qonunii.
Xulosa.
Men bu kurs ishini yozish davomida quyidagilarni bildimki.MA ning ( va ( formulalari berilgan bo‘lib, bu formulalar tarkibiga kirgan barcha mulohazalar A1 ,. . ., Am - lardan iborat bo‘lsin. Agar A1 , . . . , A m mulohazalarning barcha qiymatlar tizimlari ( i1, . . . , im ) lar uchun ( va ( formulalar bir щil qiymatlar qabul qilsalar, u holda, bu formulalar teng kuchli formulalar deyiladi.
I va U formulalarning teng kuchliligi I=U ko‘rinishda ifodalanadi.
FOYDALANILGAN ADABIYOTLAR.
O’zbekiston Respublikasi yanada rivojlantirish bo’yicha harakatlar strategiyasi to’g’risida”gi O’zbekiston Respublikasi Prezidentining Farmoni. Toshkent: Adolat 2017.
I.A.Karimov Yuksak manaviyat-yengilmas kuch.-T.: Sharq, 2008.
Ozbekiston Respublikasi «Talim togrisida» Qonuni. Barkamol avlod - Ozbekiston taraqqiyotining poydevori. -T.: Sharq, 1997.
To’rayev H.T. Matematik mantiq va diskret matematika. T: Taffakur Bo’stoni, 2011
To’rayev H.T. Mulohazalar hisobi va predikatlar mantiqi. Muammoli lektsiyalar kursi Samarqand SamDU nashriyoti, 2003
Nazarov R.N., Toshpo’latov B.T., Dusumbetov A.D. Algebra va sonlar nazariyasi. T, o’qituvchi 2 qism, 1995 й.
Куликов Л. Я. Алгебра и теория чисел. Москва: Высш.шк. 1979 г. (
Ziyonet.uz
Referat.uz
Download 29.56 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling