The Fabric of Reality David Deutch
partly on the attributes of other genes and species (i.e. other ideas) that are
Download 1.42 Mb. Pdf ko'rish
|
The Fabric of Reality
partly on the attributes of other genes and species (i.e. other ideas) that are already present there. The new world-view that may be implicit in a theory that solves a problem, and the distinctive features of a new species that takes over a niche, are emergent properties of the problem or niche. In other words, obtaining solutions is inherently complex. There is no simple way of discovering the true nature of planets, given (say) a critique of the celestial- sphere theory and some additional observations, just as there is no simple way of designing the DNA of a koala bear, given the properties of eucalyptus trees. Evolution, or trial and error — especially the focused, purposeful form of trial and error called scientific discovery — are the only ways. For this reason, Popper has called his theory that knowledge can grow only by conjecture and refutation, in the manner of Figure 3.3, an evolutionary epistemology. This is an important unifying insight, and we shall see that there are other connections between these two strands. But I do not want to overstate the similarities between scientific discovery and biological evolution, for there are important differences too. One difference is that in biology variations (mutations) are random, blind and purposeless, while in human problem-solving the creation of new conjectures is itself a complex, knowledge-laden process driven by the intentions of the people concerned. Perhaps an even more important difference is that there is no biological equivalent of argument. All conjectures have to be tested experimentally, which is one reason why biological evolution is slower and less efficient by an astronomically large factor. Nevertheless, the link between the two sorts of process is far more than mere analogy: they are two of my four intimately related ‘main strands’ of explanation of the fabric of reality. Both in science and in biological evolution, evolutionary success depends on the creation and survival of objective knowledge, which in biology is called adaptation. That is, the ability of a theory or gene to survive in a niche is not a haphazard function of its structure but depends on whether enough true and useful information about the niche is implicitly or explicitly encoded there. I shall say more about this in Chapter 8. We can now begin to see what justifies the inferences that we draw from observations. We never draw inferences from observations alone, but observations can become significant in the course of an argument when they reveal deficiencies in some of the contending explanations. We choose a scientific theory because arguments, only a few of which depend on observations, have satisfied us (for the moment) that the explanations offered by all known rival theories are less true, less broad or less deep. Take a moment to compare Figures 3.1 and 3.3. Look how different these two conceptions of the scientific process are. Inductivism is observation- and prediction-based, whereas in reality science is problem- and explanation- based. Inductivism supposes that theories are somehow extracted or distilled from observations, or are justified by them, whereas in fact theories begin as unjustified conjectures in someone’s mind, which typically precede the observations that rule out rival theories. Inductivism seeks to justify predictions as likely to hold in the future. Problem-solving justifies an explanation as being better than other explanations available in the present. Inductivism is a dangerous and recurring source of many sorts of error, because it is superficially so plausible. But it is not true. When we succeed in solving a problem, scientific or otherwise, we end up with a set of theories which, though they are not problem-free, we find preferable to the theories we started with. What new attributes the new theories will have therefore depends on what we saw as the deficiencies in our original theories — that is, on what the problem was. Science is characterized by its problems as well as by its method. Astrologers who solve the problem of how to cast more intriguing horoscopes without risking being proved wrong are unlikely to have created much that deserves to be called scientific knowledge, even if they have used genuine scientific methods (such as market research) and are themselves quite satisfied with the solution. The problem in genuine science is always to understand some aspect of the fabric of reality, by finding explanations that are as broad and deep, and as true and specific, as possible. When we think that we have solved a problem, we naturally adopt our new set of theories in preference to the old set. That is why science, regarded as explanation-seeking and problem-solving, raises no ‘problem of induction’. There is no mystery about why we should feel compelled tentatively to accept an explanation when it is the best explanation we can think of. TERMINOLOGY solipsism The theory that only one mind exists and that what appears to be external reality is only a dream taking place in that mind. problem of induction Since scientific theories cannot be logically justified by observation, what does justify them? induction A fictitious process by which general theories were supposed to be obtained from, or justified by, accumulated observations. problem A problem exists when it seems that some of our theories, especially the explanations they contain, seem inadequate and worth trying to improve. criticism Rational criticism compares rival theories with the aim of finding which of them offers the best explanations according to the criteria inherent in the problem. science The purpose of science is to understand reality through explanations. The characteristic (though not the only) method of criticism used in science is experimental testing. experimental test An experiment whose outcome may falsify one or more of a set of rival theories. SUMMARY In fundamental areas of science, observations of ever smaller, more subtle effects are driving us to ever more momentous conclusions about the nature of reality. Yet these conclusions cannot be deduced by pure logic from the observations. So what makes them compelling? This is the ‘problem of induction’. According to inductivism, scientific theories are discovered by extrapolating the results of observations, and justified when corroborating observations are obtained. In fact, inductive reasoning is invalid, and it is impossible to extrapolate observations unless one already has an explanatory framework for them. But the refutation of inductivism, and also the real solution of the problem of induction, depends on recognizing that science is a process not of deriving predictions from observations, but of finding explanations. We seek explanations when we encounter a problem with existing ones. We then embark on a problem-solving process. New explanatory theories begin as unjustified conjectures, which are criticized and compared according to the criteria inherent in the problem. Those that fail to survive this criticism are abandoned. The survivors become the new prevailing theories, some of which are themselves problematic and so lead us to seek even better explanations. The whole process resembles biological evolution. Thus we acquire ever more knowledge of reality by solving problems and finding better explanations. But when all is said and done, problems and explanations are located within the human mind, which owes its reasoning power to a fallible brain, and its supply of information to fallible senses. What, then, entitles a human mind to draw conclusions about objective, external reality from its own purely subjective experience and reason? |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling