The Jacobi and Gauss-Seidel Iterative Methods The Jacobi Method Two assumptions made on Jacobi Method


Numerical Algorithm of Jacobi Method


Download 115.86 Kb.
Pdf ko'rish
bet2/3
Sana17.12.2022
Hajmi115.86 Kb.
#1026329
1   2   3
Bog'liq
7 3 The Jacobi and Gauss Seidel Iterativ

Numerical Algorithm of Jacobi Method 
Input: 
,
, tolerance TOL, maximum number of iterations 

Step 1 Set 
Step 2 while (
) do Steps 3-6 
Step 3 For 
[∑
]
Step 4 If 
|| || , then OUTPUT ( 
);
STOP. 
Step 5 Set 
Step 6 For 
Set 
Step 7 OUTPUT 

);
STOP. 
Another stopping criterion in Step 4:
|| 
||
|| 
||



The Gauss-Seidel Method 
Main idea of Gauss-Seidel 
With the Jacobi method, the values of 
obtained in the 
th iteration remain unchanged until the entire th iteration 
has been calculated. With the Gauss-Seidel method, we use the new values 
as soon as they are known. For example, 
once we have computed 
from the first equation, its value is then used in the second equation to obtain the new 
and so on.
Example. Derive iteration equations for the Jacobi method and Gauss-Seidel method to solve 
The Gauss-Seidel Method.  For each 
generate the components
of 
 from 
 by 
[ ∑

]
Namely, 
Matrix form of Gauss-Seidel method. 
 
Define 
and

Gauss-Seidel 
method 
can 
be 
written 
as



Numerical Algorithm of Gauss-Seidel Method 
Input: 
,
, tolerance TOL, maximum number of iterations 

Step 1 Set 
Step 2 while (
) do Steps 3-6 
Step 3 For 
[ ∑

]
Step 4 If 
|| || , then OUTPUT ( 
);
STOP. 
Step 5 Set 
Step 6 For 
Set 
Step 7 OUTPUT 

);
STOP. 

Download 115.86 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling