Transponirlangan matritsa. Matritsaning rangi 1-misol
Download 0.51 Mb. Pdf ko'rish
|
2-mavzu
- Bu sahifa navigatsiya:
- Mustaqil bajarish uchun misollar Quyidagi matritsalarni transponirlang : 1.1.21.
- Agar A matritsa berilgan bo’lsa T AA va
- Mustaqil bajarish uchun misollar Berilgan matritsaga teskari bo’lgan matritsani toping. 1.
- Kramer qoidasi.
- Mustaqil bajarish uchun misollar Bir jinsli chiziqli tenglamalar sistemasining umumiy va fundamental yechimlar sistemasini toping
TRANSPONIRLANGAN MATRITSA. MATRITSANING RANGI 1-misol. Berilgan 1 3 2 0 A transponirlang. A matritsaning 1-chi va 2-chi satrlarni mos ravishda 1-chi va 2-chi ustun qilib tasvirlaymiz, ya’ni 1 2 3 0 T A
Har qanday A m×n matritsaning ixtiyoriy ravishda tanlangan k ta (k≤min(m,n)) satr va ustunlarining kesishmasida joylashgan elementlaridan tuzilgan k-tartibli determinant bu matritsaning k-tartibli minori deyiladi. 2-misol. Berilgan matrisaning rangini toping: 3 1 5 1 5 3 1 1 6 5 1 2
~ II 3 III
12 3 9 0 4 1 3 0 6 5 1 2 ~ I III 2 I II 2 3 1 5 1 5 3 1 1 6 5 1 2 . 0 0 0 0 4 1 3 0 6 5 1 2
Oxirgi topilgan matritsadan ko’rinadiki u ikkita 0 qatnashgan satrdan iborat, bundan berilgan matritsa rangi 2 teng.
3-misol. Matritsani minorlari yrdamida rangini toping va biror bazis minorrini ko’rsating: 2 1 6 2 2 1 0 0 4 3 3 1 A . A matritsaning nol elementlari mavjud bo’lmaganligi uchun 1 rang A . Uning 2-tartibli biror 0 ga teng bo’lmagan minorini topamiz: 0 3 1 0 3 3 2
. Bundan
2 rang
A . Tarkibida 2
mavjud bo’lgan 3-tartibli minorlarini hisoblaymiz, 0
2 3 1 1 yoyamiz
yicha bo'
satr - 2 1 6 2 1 0 0 3 3 1 1 3
;
2 1 4 3 6 2 2 2 1 3 yoyamiz
yicha bo'
ustun - 1 2 1 6 2 1 0 4 3 3 2 3
0 12 12 4 6 6 2 2 3 ; Tarkibida 2
ni saqlovchi barcha 3-tartibli minorlar 0 teng ekan, bunda
3 rang
A . Yani
2 rang A . Matritsaning bazis minorilardan biri 1 0 3 3 2 M .
Quyidagi matritsalarni transponirlang: 1.1.21. 5 2 0 3 A
1.1.22. 1 5 2 3 0 1
Agar A matritsa berilgan bo’lsa T AA va A A T ni hisoblang: 1. 4 2 0 3 2 1
Berilgan matritsaning rangini toping 2. 1 4 3 1 1 1 1 0 0 3 2 1
Matritsani minorlari yrdamida rangini toping va biror bazis minorrini ko’rsating 3. 9 8 7 5 4 2 3 2 1
TESKARI MATRITSA. MATRITSAVIY TENGLAMALAR X noma’lum matritsali matritsali tenglamala deb quyidagi ko’rinishdagi ifodalarga aytiladi B AXC B XA B AX va ; . Agar bu tenglamalardagi A va C matritsalar maxsusmas matritsalar bo’lsa, u holda bu tenglamaning yechimi quyidagicha ifodalanadi: 1 1 1 1 va ;
A X BA X B A X .
9 3 1 4 2 1 1 1 1
matritsaga teskari matritsani toping.
1) A det
ni topamiz: 0 2 23 25 4 3 1 9 1 1 2 1 1 ) 1 3 1 4 1 1 9 2 1 ( 9 3 1 4 2 1 1 1 1 0 det A bo’lgani uchun 1
mavjud. 2) Matritsaning barcha algebraik to’ldiruvchilarini topamiz: ,
3 4 9 2 9 3 4 2 9 3 4 2 1 1 1 11 A
, 5 4 1 9 1 9 1 4 1 9 1 4 1 1 2 1 12
, 1 2 3 2 1 3 1 3 1 2 1 3 1 2 1 1 3 1 13 A
, 6 3 9 3 1 9 1 9 3 1 1 9 3 1 1 1 1 2 21 A
, 8 1 9 1 1 9 1 9 1 1 1 9 1 1 1 1 2 2 22 A
, 2 1 3 1 1 3 1 3 1 1 1 3 1 1 1 1 3 2 23
, 2 2 4 2 1 4 1 4 2 1 1 4 2 1 1 1 1 3 31 A
, 3 1 4 1 1 4 1 4 1 1 1 4 1 1 1 1 2 3 32 A
. 1 1 2 1 1 2 1 2 1 1 1 2 1 1 1 1 3 3 33 A
3) Matritsani tuzamiz 1 2 1 3 8 5 2 6 6 ~ 33 23 13 32 22 12 31 21 11
A A A A A A A A A A T ij
4) 1
5 , 0 1 5 , 0 5 , 1 4 5 , 2 1 3 3 1 2 1 3 8 5 2 6 6 2 1 ~ det 1 1
A A
Endi 1 A ning to`g`riligini tekshiramiz:
5 . 0 1 5 . 0 5 . 1 4 5 . 2 1 3 3 9 3 1 4 2 1 1 1 1 1 AA
5 . 0 9 5 . 1 3 1 1 1 9 4 3 3 1 5 . 0 9 5 . 2 3 3 1 5 . 0 4 5 . 1 2 1 1 1 4 4 2 3 1 5 . 0 4 5 . 2 2 3 1 5 . 0 1 5 . 1 1 1 1 1 1 4 1 3 1 5 . 0 1 5 . 2 1 3 1 1 0 0 0 1 0 0 0 1
2-misol. Matritsaviy tenglamalarni yeching 4 1 3 2 3 2 2 1 X . Berilgan matritsali tenglmani B AX ko’rinishda yozib olamiz. Uning yechimi B A X 1 ko’rinishda izlanadi (agar 1 A mavjud bo’lsa). 1) A matritsaning determinantini topamiz 0 1
3 3 2 2 1 det
. Teskari matritsa 1 A mavjud ekan. 2) Teskari matritsani topamiz
1 2 2 3 1 2 2 3 1 ~ det 1 1
A A
3) Matritsani topamiz 2 3 1 4 4 1 3 2 1 2 2 3 1 B A X 3-misol. Matritsaviy tenglamalarni yeching 4 5 2 3 3 2 2 1 2 1 0 1
Berilgan matritsali tenglmani B AXC ko’rinishda yozib olamiz. Uning yechimi 1 1
A X ko’rinishda izlanadi (agar 1 A va 1 C mavjud bo’lsa). 1) A va C matritsalarning determinantlarini topamiz: 0 2 2 1 0 1 det
A va
0 1 3 2 2 1 det C . Teskari matritsalar 1 A va 1 C mavjud ekan. 2) Teskari matritsalarni topamiz: 2 / 1 2 / 1 0 1 1 1 0 2 2 1 ~ det 1 1
A A
1 2 2 3 1 2 2 3 1 ~ det 1 1 C C C
3) Matritsani topamiz 3 5 8 13 1 2 2 3 1 1 2 3 1 2 2 3 4 5 3 5 , 0 5 , 0 0 1 1 1
A X
Mustaqil bajarish uchun misollar Berilgan matritsaga teskari bo’lgan matritsani toping. 1. 0 1 2 4 2 3 3 2 1
Matritsaviy tenglamalarni yeching 2. 3 1 0 2 1 0 1 1 X 3. 3 1 0 2 1 0 1 1 X CHIZIQLI TENGLAMALAR SISTEMASINI YECHISH USULLARI Teskari matritsa usuli. Chiziqli tenglamalar sistemaning matritsaviy ko‘rinishda berilgan bo’lsin: AX=B, bunda
n mn m m n n b b b B x x x X a a а a a а a a а А 2 1 2 1 2 1 2 22 21 1 12 11 , , Agar
0 det
A bo‘lasa, tenglama yechimi quyida formula yordamida topiladi: B A X 1 yoki n nn n n n n n b b b A A A A A A A A A x x x X 2 1 2 1 2 22 12 1 21 11 2 1 1 nn n n n n n n n A b A b A b A b A b A b A b A b A b 2 2 1 1 2 22 2 12 1 1 21 2 11 1 . .......... .......... .......... .......... 1 . Kramer qoidasi.
Bu yerdan sistemaning
k x k , 1 yechimi uchun ushbu formulalar kelib chiqadi: . ,
2 , 1 , 1 ) ( 1 2 2 1 1 n k A b A b A b x k k nk n k k k 1-misol. Chiziqli tenglamalar sistemasini Karmer qoidasi va teskari matritsa usuli yodamida yeching: 7 2 1 y x y x
a) Kramer qoisdasi. Matritsaning determinantini topamiz: 0 3 1 2 1 1 det A . Sistemaning yechimi mavjud va u yagonadir. Endi quyidagilarni topamiz: 6 1 7 1 1 x va
9 7 2 1 1 y . Bundan sistemaning yechimini topamiz: 3 3 9 ; 2 3 6 y x y x . Javob: (2; 3)
b) Sistemani teskari matritsa usulida yechamiz. 1 2 1 1 A ga teskari bo’lgan 1
0 3 det
bo’lgani uchun 1
. 1
1 ; 2 ; 1 22 21 12 11
A A A
1 2 1 1 ~
ij A A ni tuzamiz va teskari matritsani topamiz:
1 2 1 1 3 1 ~ det 1 1 A A A .
End sistemani yechimini topamiz:
3 2 9 6 3 1 7 1 1 2 7 1 1 1 3 1 7 1 1 2 1 1 3 1 y x
2-misol. Chiziqli tenglamalar sistemasini Karmer qoidasi va teskari matritsa usuli yodamida yeching: 6 8 7 9 6 5 4 6 3 2 y x z y x z y x
a) Kramer qoisdasi. Matritsaning determinantini topamiz: 0 27 0 8 7 6 5 4 3 2 1 det
. Sistemaning yechimi mavjud va u yagonadir. Endi quyidagilarni topamiz: 27 0 6 7 6 9 4 3 6 1 , 54 0 8 6 6 5 9 3 2 6 y x va
54 6 8 7 9 5 4 6 2 1
.
Bundan sistemaning yechimini topamiz:
2 27 54 ; 1 27 27 ; 2 27 54 z y x z y x .
Javob: 2 ; 1 ; 2
b) Sistemani teskari matritsa usulida yechamiz. 0 8 7 6 5 4 3 2 1 A ga teskari bo’lgan matritsani topamiz.
0
det A bo’lgani uchun 1
3 6 3 6 21 42 3 24 48 27 1 1 A . End sistemani yechimini topamiz:
2 3 2 1 2 1 2 7 14 1 8 16 3 1 6 9 6 3 6 3 6 21 42 3 24 48 27 1 z y x
2 1 2 6 3 6 3 1 2 1 3 2 2 1 2 2 3 7 2 14 2 1 3 8 2 16 3 1 . Javob: 2 ; 1 ; 2 2.2.3. Chiziqli tenglamalar sistemasini Karmer qoidasi va teskari matritsa usuli
yodamida yeching: 24 9 8 7 15 6 5 4 6 3 2 z y x z y x z y x
Matritsaning determinantini topamiz: 0 225 225 48 72 105 96 84 45 9 8 7 6 5 4 3 2 1 det
A .
0 det
A bo’lgani uchun sistemaning yechimi mavjud emas.
Mustaqil bajarish uchun misollar Chiziqli tenglamalar sistemasini Karmer qoidasi va teskari matritsa usuli yodamida yeching: 1. 5 2 4 y x y x 2. 21 8 10 3 6 4 6 2 3 3 2
y x z y x z y x BIR JINSLI VA BIR JINSLI BO’LMAGAN CHIZIQLI TENGLAMALAR SISTEMASI n noma’lumli m ta bir jinsli chiziqli tenglamalar sistemasi berilgan bo’lsin: 0 0 0 3 3 2 2 1 1 2 3 23 2 22 1 21 1 3 13 2 12 1 11 n mn m m m n n n n x a x a x a x a x a x a x a x a x a x a x a x a (1) 1-misol. Bir jinsli chiziqli tenglamalar sistemasining umumiy va fundamental yechimlar sistemasini toping
0 3 2 0 2 y x y x
Sistemani kengaytirilgan matritsasini yozib, uni qiyudagicha ko’rinishga keltiramiz 0 0 7 0 2 1 ~ I 2 II 0 0 3 2 2 1
Endi A matritsani qaraymiz: 7 0 2 1 ~ I 2 II 3 2 2 1
Bir jinsli tenglama hamma vaqt birgalikdadir, ya’ni
2 2 | rang rang
B A A
Bundan ko’rinadiki sistema aniqlangan va yagona yechimga trivial yechimga ega, ya’ni 0 ; 0 y x .
0 0 0 7 0 2 y x y y x -umumiy yechim.
2-misol. Bir jinsli chiziqli tenglamalar sistemasining umumiy va fundamental yechimlar sistemasini toping
0 2 0 z y x z y x
Sistemani kengaytirilgan matritsasini yozib, uni qiyudagicha ko’rinishga keltiramiz 1 1 0 1 1 1 ~ 3 : II 3 3 0 1 1 1 ~ I 2 II 1 1 2 1 1 1
Bir jinsli tenglama hamma vaqt birgalikdadir, ya’ni n B A A 3 2 | rang rang
Bundan ko’rinadiki asosiy o’zgaruvchilar soni 2 ta, ozod hadlar soni
1 2 3 rang
n ga teng. Ya’ni, x va
lar asosiy o’zgaruvchilar, z -esa ozod had. y va
z juftligini asosiy o’zgaruvchi deb olaolmaymiz, chunki 0 1 1 1 1 , 0 1 1 0 1 1 bo’lgani uchun x va y lar asosiy o’zgaruvchilar bo’ladi.
Hosil qilingan matritsaga mos sistemani yozib olamiz
y x z y z y x 0 0 0
Ozod hadni t bilan almashtirsak, ya’ni t z bo’lsa, u holda umumiy yechim 1 ; 1 ; 0 ; ; 0 t t t ; (0;1;1) - - fundamental yechim.
Bir jinsli chiziqli tenglamalar sistemasining umumiy va fundamental yechimlar sistemasini toping: 1. 0 6 4 0 3 2
x y x 2. 0 9 8 7 0 6 5 4 0 3 2
y x z y x z y x 3. 0 3 3 6 0 2 2 4
2 z y x z y x z y x Download 0.51 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling