Turli XIL komponentli sistemalarning yuqori bosim va haroratdagi holat diagrammalarini talqini


Download 136.77 Kb.
bet1/6
Sana17.06.2023
Hajmi136.77 Kb.
#1545315
  1   2   3   4   5   6
Bog'liq
TURLI XIL KOMPONENTLI SISTEMALARNING YUQORI BOSIM VA HARORATDAGI HOLAT DIAGRAMMALARINI TALQINI


TURLI XIL KOMPONENTLI SISTEMALARNING YUQORI BOSIM VA HARORATDAGI HOLAT DIAGRAMMALARINI TALQINI
REJA
Kirish

  1. Sonli qator va uning yig‘indisi

  2. Turli xil sonli qatorlarning yaqinlashuvchanligi

  3. Turli xil komponentli sistemalarning yuqori bosim va haroratdagi holat diagrammalarini talqini

  4. Yaqinlashuvchi qatorlarning sodda xossalari

  5. Qator yaqinlashishining Koshi kriteriyasi

Xulosa
Foydalanilgan adabiyotlar


  1. Sonli qator va uning yig‘indisi. Faraz qilaylik sonlarning biror cheksiz ketma-ketligi berilgan bo‘lsin:

Bu sonlardan tuzilgan ushbu

ifodaga cheksiz qator ( qisqacha – qator ) deyiladi.
{an} ketma-ketlik hadlari qatorning hadlari deyiladi. (1) ifodada + belgisi qatnashganligi sababli qatorni ko‘rinishda ham yoziladi. Agar n tayinlangan bo‘lsa, an- qatorning n-hadi deyiladi, agar n umumiy holda berilsa, an- qatorning umumiy hadi deyiladi. Umumiy had yordamida berilgan qatorning ixtiyoriy hadini yozib olish mumkin. Masalan, agar bo‘lsa, u holda qator
yoki
ko‘rinishda bo‘ladi. Agar bo‘lsa, u holda quyidagi ko‘rinishdagi qatorga ega bo‘lamiz:
yoki .
(1) qatorning birinchi n ta hadi yig‘indisini qaraymiz va uni orqali belgilaymiz:

Bu yig‘indini (1) qatorning n-xususiy yig‘indisi deyiladi. Bunda S1 deganda a1 ni qarashga kelishamiz.
(2) da n ga 1, 2, 3, … qiymatlar berib, quyidagi xususiy yig‘indilar ketma-ketligiga ega bo‘lamiz:
.
Yuqoridagi {Sn} ketma-ketlik yaqinlashuvchi yoki uzoqlashuvchi bo‘lishi mumkin.
Ta’rif. Agar (2) qatorning xususiy yig‘indilari ketma-ketligi { } chekli limitga ega bo‘lsa, ya’ni mavjud bo‘lsa, u holda bu qator yaqinlashuvchi qator deyiladi. { } ketma-ketlik limiti
(2)
qatorning yig‘indisi deyiladi.
Bu holda
yoki kabi yoziladi.
Agar qatorning xususiy yig‘indilar ketma-ketligi chekli limitga ega bo‘lmasa, u holda uzoqlashuvchi qator deyiladi.
Agar bo‘lsa, u holda yoki kabi yozishga kelishamiz.
Shunday qilib, qator yig‘indisi ikkita amal (qo‘shish va limitga o‘tish) natijasida hosil qilinadi. Qo‘shish amali xususiy yig‘indilarni, ikkinchi amal esa ularning limitini topish uchun kerak bo‘ladi.
Yaqinlashuvchi va uzoqlashuvchi qatorlarga misollar ko‘ramiz.
1-misol. Ushbu qatorni yaqinlashishga tekshiring:
.
Yechish. Berilgan qatorning n-xususiy yig‘indisi
. Bu yig‘indini soddalashtirish maqsadida qatorning n-hadini quyidagi ko‘rinishda yozib olamiz. U holda
=
= bo‘ladi. Ravshanki, {Sn} ketma-ketlik limiti mavjud va ga teng. Demak, berilgan qator yaqinlashuvchi bo‘lib, uni = , yoki = kabi yozish mumkin ekan.
2-misol. Umumiy hadi bo‘lgan qatorni yaqinlashishga tekshiring.
Yechish. Bu qatorning n-xususiy yig‘indisi ga teng. Xususiy yig‘indilar ketma-ketligi quyidagi ko‘rinishda bo‘ladi:
1, 0, 1, 0, ...
Ma’lumki, bu ketma-ketlik chekli limitga ega emas. Demak, qator uzoqlashuvchi ekan.

Qatorga eng sodda misol sifatida geometrik progressiya barcha hadlarining yig‘indisini olishimiz mumkin:
(3)
bunda a0. Bu qator geometrik qator deyiladi. Geometrik qator q ning qanday qiymatlarida yaqinlashuvchi bo‘lishini aniqlaymiz. Buning uchun uning n-xususiy yig‘indisini qaraymiz. Geometrik progressiya birinchi n ta hadi yig‘indisining formulasiga ko‘ra (q1)

o‘rinli. Agar q<1 bo‘lsa, u holda bo‘lib, mavjud va bo‘ladi. Demak, q<1 bo‘lganda (3) qator yaqinlashuvchi va uning yig‘indisi bo‘ladi.
Agar |q|>1 bo‘lsa, u holda va = bo‘ladi. Demak, bu holda geometrik qator uzoqlashuvchi bo‘ladi. Agar q=-1 bo‘lsa, qatorning xususiy yig‘indisi bo‘ladi. Bu holda xususiy yig‘indilar ketma-ketligi uzoqlashuvchi, demak (3) qator ham uzoqlashuvchi bo‘ladi. Agar q=1 bo‘lsa, qatorning xususiy yig‘indisi Sn=a+a+…a=na va = bo‘ladi.
Shunday qilib, geometrik qator q<1 bo‘lganda yaqinlashuvchi, |q|1 bo‘lganda uzoqlashuvchi bo‘ladi. Yaqinlashuvchi bo‘lgan holda cheksiz kamayuvchi geometrik progressiya yig‘indisining formulasi hosil bo‘ladi:
=

2.Yaqinlashuvchi qatorlarning sodda xossalari.


Bizga ushbu



va

qatorlar berilgan va c ixtiyoriy o‘zgarmas son bo‘lsin.
Ushbu

qator (1) qatorni c o‘zgarmas songa ko‘paytirish natijasida hosil qilingan deyiladi.

qatorlar esa, mos ravishda (1) va (2) qatorlarning yig‘indisi va ayirmasi deb ataladi.
1-teorema. Agar (1) qator yaqinlashuvchi, yig‘indisi S ga teng bo‘lsa, u holda (3) qator ham yaqinlashuvchi bo‘lib, yig‘indisi cS ga teng bo‘ladi.
Isboti. (3) qatorning n-xususiy yig‘indisini yozib olamiz: . Buni quyidagicha yozib olish mumkin: , bu yerda Sn (1) qatorning n-xususiy yig‘indisi. Teorema shartiga ko‘ra , u holda limit mavjud bo‘ladi: .
Shunday qilib, yaqinlashuvchi qatorni o‘zgarmas songa ko‘paytirish natijasida yana yaqinlashuvchi qator hosil bo‘ladi va uning yig‘indisini topish uchun berilgan qator yig‘indisini shu songa ko‘paytirish yetarli.
2-teorema. Agar (1) va (2) qatorlar yaqinlashuvchi va yig‘indilari mos ravishda S va S’ bo‘lsa, u holda (4) va (5) qatorlar ham yaqinlashuvchi bo‘ladi va ularning yig‘indilari mos ravishda S+S’ va S-S’ ga teng bo‘ladi.
Shunday qilib, yaqinlashuvchi qatorlarni chekli yig‘indilar kabi qo‘shish va ayirish mumkin ekan. Bu natijani yaqinlashuvchi qatorlarning algebraik yig‘indilari uchun ham umumlashtirish mumkin.
3-teorema. Agar yaqinlashuvchi qatorda hadlarning joylashish tartibini o‘zgartirmasdan ixtiyoriy guruhlash natijasida hosil bo‘lgan qator yaqinlashuvchi va uning yig‘indisi avvalgi qator yig‘indisiga teng bo‘ladi.

Qatorning qoldig‘i

Ushbu


qator berilgan bo‘lsin. Uning dastlabki k ta (tayinlangan son) hadini tashlab yuborish natijasida yangi qator hosil bo‘ladi:

(2) qator (1) qatorning qoldig‘i deyiladi.
3. Qator yaqinlashishining zaruriy sharti.
Teorema. Agar
(1)
qator yaqinlashuvchi bo‘lsa, u holda uning an umumiy hadi n cheksizga intilganda nolga intiladi, ya’ni bo‘ladi.
Isboti. Faraz qilaylik, (1) qator yaqinlashuvchi va yig‘indisi S ga ya’ni bo‘lsin. U holda {Sn} ketma-ketlikning qism ketma-ketligi ham yaqinlashuvchi va bo‘ladi.
Ravshanki. bundan mavjud va . Shunday qilib, (1) qator yaqinlashuvchi bo‘lishi uchun uning umumiy hadi nolga intilishi zarur ekan.
Yuqoridagi teoremadan qator uzoqlashishining yetarli sharti kelib chiqadi.
Natija. Agar (1) qatorning an umumiy hadi n cheksizga intilganda noldan farqli chekli limitga ega bo‘lsa, yoki limitga ega bo‘lmasa, u holda bu qator uzoqlashuvchi bo‘ladi.
Bu natija ba’zi qatorlarning uzoqlashuvchi ekanligiga oson ishonch hosil qilishga yordam beradi.
3-misol. Ushbu qatorni yaqinlashishga tekshiring.
Yechish. Qatorning umumiy hadi ga teng va demak, yuqoridagi natijaga ko‘ra qator uzoqlashuvchi.
4-misol. Ushbu qatorni yaqinlashishiga tekshiring.
Yechish. Bu qatorning umumiy hadi an= va . Demak, berilgan qator uzoqlashuvchi.
Yuqorida isbotlangan teoremaning teskarisi, ya’ni shartdan qatorning yaqinlashuvchi ekanligi kelib chiqavermaydi.
Bunga misol sifatida garmonik qator deb ataluvchi ushbu qatorni qaraymiz:
(2)
Garmonik qatorning uzoqlashuvchi ekanliligini ko‘rsatamiz. Buning uchun teskaridan, ya’ni garmonik qator yaqinlashuvchi deb faraz qilamiz. U holda uning xususiy yig‘indisi chekli S limitga ega bo‘ladi. Ravshanki, qatorning xususiy yig‘indisi ham shu limitga ega bo‘ladi.
Bu holda
.
Ammo
,
ya’ni , bundan ketma-ketlikning da nolga intilmasligi kelib chiqadi. Bu esa garmonik qator yaqinlashuvchi degan farazimizga zid. Demak, garmonik qator uzoqlashuvchi ekan.

4. Qator yaqinlashishining Koshi kriteriyasi.


Teorema. Ushbu
(1)
qator yaqinlashuvchi bo‘lishi uchun ixtiyoriy  musbat son olinganda ham shunday n0 natural sonni ko‘rsatish mumkin bo‘lib, barcha n>n0 va istalgan natural p sonda , boshqacha aytganda
 (2)
tengsizlikning bajarilishi zarur va yetarli.
Isboti. Zaruriyligi. (1) qator yaqinlashuvchi, ya’ni bo‘lsin.
U holda ketma-ketlik yaqinlashuvchi bo‘lishining Koshi kriteriyasiga ko‘ra ixtiyoriy  musbat son uchun shunday n0 natural son topilib, barcha m> n0 va n> n0 larda
 (3)
tengsizlik bajariladi. m=n+p deb olib, (3) dan (2) ni hosil qilamiz.
Yetarliligi. Teorema qator xususiy yig‘indilar ketma-ketligi {Sn} ning yaqinlashuvchi ekanligini bildiradi. Demak, ta’rif bo‘yicha (1) qator yaqinlashuvchi.
Misol. Koshi kriteriyasidan foydalanib,

qatorning yaqinlashuvchi ekanligini isbotlang.
Yechish. Ixtiyoriy  musbat soni uchun shunday n0 natural son topilib, n>n0 va istalgan r natural sonda  bajarilishini ko‘rsatamiz.
Ravshanki, . Bulardan

ya’ni tengsizlikning istalgan r da o‘rinli ekanligi kelib chiqadi. Demak, da  tengsizlik o‘rinli bo‘ladi. Shunday qilib, ixtiyoriy >0 son uchun n0=[1/] deb olsak, n> n0 va istalgan r natural son uchun  tengsizlikning o‘rinli ekanligi kelib chiqadi. Demak, qator yaqinlashuvchi.
1. Sonli qator tushunchasi
a1 + a2 + ... + an + ... = (1)
ifodaga sonli qator deyiladi. Bu yerda a1, a2, ... , an, ... haqiqiy sonlar bo`lib, qatorning hadlari, an – had qatorning n - hadi yoki umumiy hadi deb ataladi. Har bir (1) sonli qator uchun
Sn = a1 + a2 + ... + an , n = 1, 2, 3, ...
qismiy yig`indilar Sn qurish mumkin.
Misol. Ushbu

sonli qator uchun qismiy yig`indilar:




bo`ladi.
Agar (1) qatorning qismiy yig`indilari ketma-ketligi chekli limit S ga ega bo`lsa, bu songa qatorning yig`indisi deb ataladi:
(2)
Agar (2) chekli limitga ega bo`lsa, qator yaqinlashuvchi, S - uning yig`indisi deyiladi.
Misol. Yuqorida keltirilgan misol uchun:

Demak, berilgan sonli qator chekli limitga ega ekan. Qator yaqinlashuvchi.
Agar bo`lsa yoki mavjud bo`lmasa, qator uzoqlashuvchi deb ataladi.
rn = S - Sn songa qatorning qoldig`i deyiladi. Yaqinlashuvchi sonli qator uchun bo`ladi va demak yetarlicha katta n lar uchun S Sn o`rinli bo`ladi.
Misollar:
1) Ushbu geometrik progressiyaning hadlaridan tuzilgan sonli qator bo`lsa yaqinlashuvchi, yig`indisi bo`ladi, bo`lsa, uzoqlashuvchidir;
2)  sonli qator garmonik qator deyiladi va u uzoqlashuvchi qatordir.
3) Umumlashgan garmonik qator deb,

sonli qatorga aytiladi va bu sonli qator p  1 da uzoqlashuvchi, p > 1 da yaqinlashuvchidir.

Download 136.77 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling