Учебное пособие Электронный вариант Ростов-на-Дону, 2005


Download 0.8 Mb.
bet11/38
Sana16.06.2023
Hajmi0.8 Mb.
#1516803
TuriУчебное пособие
1   ...   7   8   9   10   11   12   13   14   ...   38
Bog'liq
Логика. Теория и практика

а





b

Конъюнкция


а b



Дизъюнкция
(строгая)
а b

Дизъюнкция (нестрогая)
а b

Импликация
а b

Эквиваленция


а b

и и

и

и

л

и

и

и

и

л

л

и

и

л

л

л

и

л

и

и

и

л

л

л

л

л

л

и

и



Примечание: буква «и» означает истинность суждения, а буква «л» – его ложность. Зачастую (например, в математической логике) истинность обозначается как 1, а ложность как 0.
Используя приведенную выше таблицу, можно проводить логический анализ и оценку (с позиций истинности, ложности или неопределенности) высказываний, включающих в себя ряд сложных суждений. Рассмотрим для примера следующее высказывание: «Если завтра будет солнечно, то мы хорошо покупаемся и позагораем». Логическая формула данного высказывания примет вид:
а → (b с)
Для определения истинности данного высказывания для всех возможных значениях пропозиционных переменных составим соответствующую таблицу. В этой таблице количество строк для значений истинности пропозиционных переменных вычисляется по формуле 2n, где n равно числу пропозиционных переменных (в данном случае 23 = 8), а количество столбцов равняется сумме числа пропозиционных переменных и всех выполняемых выраженных в высказывании символами типовых логических союзов. При этом порядок проведения логических операций совпадает с порядком математических вычислений: вначале выполняются действия в скобках. Итоговая логическая операция (в нашем случае – дизъюнкция) записывается в последнем столбце.

a

b

c

(b c)

a (b c)

и

и

и

и

и

и

и

л

л

л

и

л

и

л

л

и

л

л

л

л

л

и

и

и

и

л

и

л

л

и

л

л

и

л

и

л

л

л

л

и

Как мы видим, данное сложное высказывание в одних случаях принимает значение «истинно», а в других – «ложно». Такие высказывания в логике получили название выполнимых, или случайно истинных. Если высказывание во всех случаях оказывается истинным, оно называется общезначимым, или тождественно-истинным. Когда же высказывание всегда оказывается ложным, его называют логически-противоречивыми, или тождественно-ложными.


Однако метод составления полных таблиц истинности излишне громоздок. Так, к примеру, при четырех пропозиционых переменных в таблице будет 16 строк, при пяти – уже 32 и т. д. Таблица значительно разрастается и вширь при усилении сложности высказывания за счет увеличения числа логических операций в нем. Поэтому, учитывая, что в подавляющем большинстве случаев необходимо лишь однозначно определить, является ли высказывание общезначимым или нет, в логике выработан метод сокращенных таблиц. Проиллюстрируем его на примере сложного высказывания, разбирая ход рассуждений по последовательным шагам. Пусть нам дана формула высказывания следующего вида:
((a b) c) (a (b ))
1) Используя способ рассуждения «от противного», начинаем с предположения, что данная формула, являющаяся импликацией, не является истинной, т.е. на выходе имеет значение «ложь». Запишем это следующим образом:
((a b) c) (a (b ))
л
2) Известно, что импликация дает значение «ложь» только при условии, когда ее основание является истинным, а следствие – ложным. В соответствии с этим запишем:
((a b) c) (a (b ))
л
и л
3) Теперь рассмотрим следствие нашего импликационного высказывания, т. к. анализ его основания затруднен, поскольку оно является истинной импликацией, что может быть не в одном, а в трех случаях. Определенная же выше ложность же следствия, которое также является импликацией, позволяет определить, что у него, в свою очередь, основание должно быть истинным, а следствие – ложным. Зафиксируем это:
((a b) c) (a (b ))
л
и л
и л
4) Рассмотрев подформулу (b ), получим следующее распределение значений истинности: b – истинно, − ложно. Получаем следующую запись:
((a b) c) (a (b ))
л
и л
и л
и л
Таким образом, мы уже определили значения пропозиционных переменных: a – истинно, b – истинно, с – истинно (поскольку - ложно).
5) Подставляя одно из полученных значений (например, с) в основание всего рассматриваемого нами высказывания, получим:
((a b) c) (a (b ))
л
и л
и л
и и л
6) Поскольку (a b) с является истинной импликацией, а с в ней также истинно, то ясно, что (a b) может принимать значения как истинности, так и ложности. Причем, значение истинности она принимает и в том случае, когда в нее подставляются полученные нами выше значения а и b как истинных:
((a b) c) (a (b ))
л
и л
и л
и л
и
и и
Отсюда вывод, что наше предположение о ложности всей анализируемой формуле высказывания вполне может иметь место. Следовательно, данное высказывание не является однозначным (тождественно-истинным).
Следует отметить, что подробное описание процедуры анализа формулы высказывания занимает большее место, чем ее реальное осуществление. Фактически же краткая запись всей процедуры представлена в последней (результирующей) схеме. Которую можно записать и иначе:
((a b) c) (a (b ))
и и и и и л и л и л л
3. Мы рассмотрели классификацию простых и сложных суждений и элементы основанной на таблицах истинности сложных суждений логики высказываний. Теперь перейдем к рассмотрению отношений между различными суждениями.
Как и понятия, суждения могут быть сравнимыми и несравнимыми. Нас, прежде всего, как и в случае с понятиями, интересуют сравнимые, т.е. такие, которые имеют в своем составе хотя бы один общий термин (либо S, либо P). Они, в свою очередь, делятся на два класса: совместимые, т.е. такие, которые выражают одну и ту же мысль (полностью или хотя бы частично) и несовместимые – выражающие противоположные либо противоречащие мысли об одном и том же.
Классифицируя совместимые суждения, выделяют среди них следующие группы (подклассы): равнозначащие (эквивалентные) – такие, в которых в различной форме выражается одна и та же мысль (например, «Юрий Гагарин – первый космонавт» и «Юрий Гагарин – первый человек, побывавший в космосе»); подчиненные – такие, которые имеют общий предикат, а субъект одного из суждений подчиняет субъект другого (например, «Все студенты группы успешно сдали сессию» и «Некоторые студенты группы успешно сдали сессию»).

Download 0.8 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   38




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling