В е с т н и к алматинского университета
Download 280.54 Kb. Pdf ko'rish
|
2-
- Bu sahifa navigatsiya:
- Вестник Алматинского университета энергетики и связи № 3 (58) 2022
LIST OF REFERENCES
[1] Muruti G., Rahim F. A., bin Ibrahim Z. A. A survey on anomalies detection techniques and measurement methods //2018 IEEE Conference on Application, Information and Network Security (AINS). – IEEE, 2018. – С. 81-86. [2] Chae Y. Representing Stastical Network-Based Anomaly Detection by Using Trust. – University of Rhode Island, 2017. [3] Rassam M. A., Zainal A., Maarof M. A. Advancements of data anomaly detection research in wireless sensor networks: a survey and open issues //Sensors. – 2013. – Т. 13. – №. 8. – С. 10087-10122. [4] Mozaffari M., Yilmaz Y. Online anomaly detection in multivariate settings //2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP). – IEEE, 2019. – С. 1-6. [5] Zhu H., Xin Y., Wang F. A novel framework for anomaly detection based on hybrid HMM-SVM model //2011 4th IEEE International Conference on Broadband Network and Multimedia Technology. – IEEE, 2011. – С. 670-674. [6] Chalapathy R., Chawla S. Deep learning for anomaly detection: A survey //arXiv preprint arXiv:1901.03407. – 2019. Вестник Алматинского университета энергетики и связи № 3 (58) 2022 30 [7] Han L. I. Research of K-MEANS algorithm based on information entropy in anomaly detection //2012 Fourth International Conference on Multimedia Information Networking and Security. – IEEE, 2012. – С. 71-74. [8] Emadi H. S., Mazinani S. M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks //Wireless Personal Communications. – 2018. – Т. 98. – №. 2. – С. 2025-2035. [9] Martí L. et al. On the combination of support vector machines and segmentation algorithms for anomaly detection: A petroleum industry comparative study //Journal of Applied Logic. – 2017. – Т. 24. – С. 71-84. [10] Fan Z. et al. Real-time and accurate abnormal behavior detection in videos //Machine Vision and Applications. – 2020. – Т. 31. – №. 7. – С. 1-13. [11] Chalapathy R., Chawla S. Deep learning for anomaly detection: A survey //arXiv preprint arXiv:1901.03407. – 2019. [12] Liu H. et al. An anomaly detection method based on double encoder–decoder generative adversarial networks //Industrial Robot: the international journal of robotics research and application. – 2020. [13] Cheng Z. et al. Improved autoencoder for unsupervised anomaly detection //International Journal of Intelligent Systems. – 2021. – Т. 36. – №. 12. – С. 7103-7125. [14] Kawachi Y., Koizumi Y., Harada N. Complementary set variational autoencoder for supervised anomaly detection //2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2018. – С. 2366-2370. [15] Munirathinam S. Drift Detection Analytics for IoT Sensors //Procedia Computer Science. – 2021. – Т. 180. – С. 903-912. [16] Zhang X., Fan P., Zhu Z. A new anomaly detection method based on hierarchical HMM //Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies. – IEEE, 2003. – С. 249-252. [17] Tsymbler M. L. et al. Cleaning of sensor data in intelligent building heating control systems //Bulletin of the South Ural State University. Series: Computational Mathematics and Computer Science. - 2021. - Vol. 10. - No. 3. - pp. 16-36. [18] Munir M. et al. Pattern-based contextual anomaly detection in HVAC systems //2017 IEEE International Conference on Data Mining Workshops (ICDMW). – IEEE, 2017. – С. 1066-1073. [19] Wang K., Wang Y., Yin B. A density-based anomaly detection method for mapreduce //2012 IEEE 11th International Symposium on Network Computing and Applications. – IEEE, 2012. – С. 159-162. [20] Li M., Li P., Xu H. Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction //IEEE Access. – 2020. – Т. 8. – С. 35446-35454. [21] Vafaei Sadr A., Bassett B. A., Kunz M. A Flexible Framework for Anomaly Detection via Dimensionality Reduction //arXiv e-prints. – 2019. – С. arXiv: 1909.04060. [22] Zheng Z., Reddy A. L. N. Safeguarding building automation networks: THE-driven anomaly detector based on traffic analysis //2017 26th International Conference on Computer Communication and Networks (ICCCN). – IEEE, 2017. – С. 1-11. [23] Gunay H. B., Shi Z. Cluster analysis-based anomaly detection in building automation systems //Energy and Buildings. – 2020. – Т. 228. – С. 110445. [24] Perera D. W. U., Winkler D., Skeie N. O. Multi-floor building heating models in MATLAB and Modelica environments //Applied Energy. – 2016. – Т. 171. – С. 46-57. [25] Zhang F., Fleyeh H. Anomaly Detection of Heat Energy Usage in District Heating Substations Using LSTM based Variational Autoencoder Combined with Physical Model //2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). – IEEE, 2020. – С. 153-158. [26] Park S., Moon J., Hwang E. Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations //2020 International Conference on Data Mining Workshops (ICDMW). – IEEE, 2020. – С. 762-765. [27] Guzek M. et al. Advanced algorithms for operational optimization and predictive maintenance of large district heating systems //2019 IEEE 6th International Conference on Energy Smart Systems (ESS). – IEEE, 2019. – С. 165-170. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling