В программирование алгоритмов. Оценка алгоритмов с точки зрения времени и объёма. Схема Горнера для вычисления значений многочленов


Оценка алгоритмов с точки зрения времени и обьёма


Download 284.93 Kb.
bet3/4
Sana31.03.2023
Hajmi284.93 Kb.
#1311480
1   2   3   4
Bog'liq
Abdulbosit

Оценка алгоритмов с точки зрения времени и обьёма

Время выполнения алгоритма обычно зависит от объема входных данных (размер входа), под которым понимают размерность решаемой задачи. Так, при сортировке множества значений объем данных составляет количество элементов этого множества. При обработке строк объемом входных данных считается длина строки.

Пусть п — объем входных данных для некоторого алгоритма. Обозначим за Т(п) количество инструкций, выполняемых на идеализированном компьютере при исполнении алгоритма, причем оно определяется для «наихудшего случая», когда объем операций максимален.

Оценка алгоритмов с точки зрения времени и объёма


Результат будет получен мгновенно, но это потребует огромного объёма памяти. Карта большого города может содержать десятки тысяч точек. Тогда, описанная выше таблица, должна содержать более 10 млрд. ячеек. Т.е. для того, чтобы повысить быстродействие алгоритма, необходимо использовать дополнительные 10 Гб памяти. Из этой зависимости проистекает идея объёмно-временной сложности. При таком подходе алгоритм оценивается, как с точки зрении скорости выполнения, так и с точки зрения потреблённой памяти. Мы будем уделять основное внимание временной сложности, но, тем не менее, обязательно будем оговаривать и объём потребляемой памяти.

Схема горнера для вычисления значений многочлена


Вычисление значения многочлена в точке является одной из простейших классических задач программирования. При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов. Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера.

Схема горнера для вычисления значений многочлена


При вычислении значений многочленов очень широкое применение получило правило Горнера. Метод назван в честь британского математика Уильяма Джорджа Горнера. В соответствии с этим правилом многочлен n-й степени:


Download 284.93 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling