Xosmas integral Reja


-misol. integral hisoblansin. Yechish


Download 87.8 Kb.
bet2/3
Sana15.06.2023
Hajmi87.8 Kb.
#1479914
1   2   3
Bog'liq
Xosmas integral

2-misol. integral hisoblansin.
Yechish. da uzluksiz , ammo f(1-0)=+ ya`ni cheksiz katta.
> restart;
> with(plots):
Warning, the name changecoords has been redefined
> plot(1/sqrt(1-x), x=-6..6, y=-1..10,color= blue, thickness=2);

Demak, bu integral xosmasdir.




> int( 1/sqrt(1-x), x=0..1); 2
2. Xuddi yuqoridagiga o`xshash f(x) funksiya (a;b] oraliqda uzluksiz bo`lib, f(a+0)= bo`lsa, xosmas integralni
(6)
ko`rinishda ta`riflaymiz.
3. Agar f(x) funksiya (a;b) oraliqda uzluksiz bo`lib f(a+0)=, f(b-0)= bo`lsa, c (a;b) ixtiyoriy nuqta yordamida xosmas integralni
(7)
3. Umumiy hol

Agar f(x) (a;b) oraliqning chetki va ba`zi bir ichki c12<…n (a;b) nuqtalarida ham cheksiz katta bo`lib, (ci-1;ci) oraliqlarning har birida uzluksiz bo`lsa, xosmas integralni


(8)
ko`rinishda ta`riflaymiz, bu yerda c0=a, cn+1=b deb qabul qilinadi. Bu yerda yana shuni ham aytamizki, (8) da a=-;b=+ bo`lishi ham mumkin va bu holda x da f(x) ning cheksiz katta bo`lishi talab qilinmaydi.
Eslatma. (5)- (8) xosmas integrallar uchun ham yuqorida ko`rilgan yaqinlashish belgilari o`z kuchida qoladi. (7) va (8) lar uchun bu belgilar har bir oraliqda alohida qaralishi lozimdir.
4-misol. xosmas integralning yaqinlashishi tekshirilsin.
Yechish. funksiya x1= -1, x2=0 va x3=1 nuqtalarda cheksiz kattadir, (-;-1) (-1;0), (0,1) va (1;+) oraliqning har birida uzluksizdir.

Download 87.8 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling