Yerküre (geosfer)


Download 445 b.
Sana07.03.2017
Hajmi445 b.
#1893









YERKÜRE (GEOSFER)

  • YERKÜRE (GEOSFER)

  •     

  •       

  •         6371 km yarıçapında olan yerküre, içice birtakım geosferlerden meydana gelmektedir. Fiziksel ve kimyasal özellikleri birbirinden farklı olan bu geosferlerin en içten en dışa doğru, çekirdek, manto ve yer kabuğu şeklinde sıralanmaktadır



1.Yerkabuğu (Litosfer):

  • 1.Yerkabuğu (Litosfer):

  • Yerkürenin en dış kısmında taşküre veya litosfer olarak ta bilinen yerkabuğu bulunur. Karalarda daha kalın (35-40 km Tibet Platosunda ise 70 km) deniz ve okyanus tabanlarında ise daha ince (8-12 km) olan yer kabuğunun ortalama kalınlığı 33 km kadardır. Kimyasal bileşimi ve yoğunluğu birbirinden farklı iki kısımdan meydana gelir. Bunlardan biri granit bileşimindeki kayaçlardan oluşan granitik yerkabuğu; diğeri ise bazalt bileşimindeki kayaçlardan oluşan bazaltik yerkabuğudur



Granitik yerkabuğunda silisyum ve alüminyum elementleri hakimdir. Bu nedenle daha hafiftir; yoğunluğu 2.7-2.8 gr/cm3 arasında bulunur. Yerkabuğunun üst kısmını teşkil eder. Bazaltik yerkabuğunda ise silisyum ve magnezyumlu unsurlar hakimdir. Dolayısıyla granitik kabuktan daha ağırdır; yoğunluğu 3-3.5 gr/cm3 arasında değişir. Granitik yerkabuğunun altında ve okyanus tabanlarında yer alır. Bu nedenle bazaltik yerkabuğuna okyanusal kabuk adı da verilir.

  • Granitik yerkabuğunda silisyum ve alüminyum elementleri hakimdir. Bu nedenle daha hafiftir; yoğunluğu 2.7-2.8 gr/cm3 arasında bulunur. Yerkabuğunun üst kısmını teşkil eder. Bazaltik yerkabuğunda ise silisyum ve magnezyumlu unsurlar hakimdir. Dolayısıyla granitik kabuktan daha ağırdır; yoğunluğu 3-3.5 gr/cm3 arasında değişir. Granitik yerkabuğunun altında ve okyanus tabanlarında yer alır. Bu nedenle bazaltik yerkabuğuna okyanusal kabuk adı da verilir.



Bu iki kısım bütün kıtaların altında bulunmaktadır. Buna karşılık okyanusların altında durum farklıdır. Burada bazaltik kabuk birkaç km kalınlıkta ince bir tabaka halinde uzanır. Buna karşılık granitik kabuk ya hiç yoktur (Ör. Pasifik okyanusu) yada çok incedir (Atlas ve Hint Okyanusları).

  • Bu iki kısım bütün kıtaların altında bulunmaktadır. Buna karşılık okyanusların altında durum farklıdır. Burada bazaltik kabuk birkaç km kalınlıkta ince bir tabaka halinde uzanır. Buna karşılık granitik kabuk ya hiç yoktur (Ör. Pasifik okyanusu) yada çok incedir (Atlas ve Hint Okyanusları).

  •  

  •         Kabuk ile manto arasındaki sınıra Mohorovicic Süreksizliği (Moho) denilir.Bu kesimde yoğunluğa bağlı olarak sismik P dalgalarının hızı litosferde 7.2 km/sn iken, mantonun üst kısmında 8.1 km'ye çıkar



    2. Manto (Sima):

  •     2. Manto (Sima):

  •         Litosfer ile çekirdek arasında yer alan sıcak ve plastik bir kattır. Kalınlığı 2 860 km ye yakındır. Ultrabazik veya Ultramafik kayaçlardan oluşur. Ağırdır; yoğunluğu 3.5 - 6 gr/cm3 arasında bulunur. Üç kısma ayrılır:

  •  

  • a. Üst manto veya astenosfer,

  • b. Orta manto

  • c. Alt manto.

  •  

  •         Litosferin altından 700 km derinliğe kadar uzanan kuşağa üst manto veya astenosfer denilir. Bu kuşağın yoğunluğu 3.3-4.3 gr/cm3 arasında değişmekte olup, bileşiminde ultrabazik ve ultramafik (olivinli ve piroksenli), yani fazla miktarda alkali madde ve mineral içeren magma veya ergimiş malzeme bulunur, üst mantonun alt kısmında P dalga hızı yoğunluk artışından dolayı 10.7-11 km/sn'yi bulur. Yerkabuğu parçaları veya plakalar, üst mantonun üzerinde yüzerler. Çünkü bu seviyelerde mantonun bir kısmı ergiyebilir. Bunun için de, belli bir sıcaklıkta mantonun bir miktar su içermesi yeterlidir. Bu durum gerçekleşince, kısmen eriyen astenosfer hemen hiçbir direnç göstermeden biçim değiştirir.

  •  



700-2900 km derinlikleri arasında uzanan kısmında ise alt manto başlar; bu kuşakta demir ve magnezyum silikatları egemen durumdadır. Bundan dolayı alt mantonun alt kısmında yoğunluk 5.5'e kadar çıkmakta ve P dalga hızı ise 13.6 km/sn'ye ulaşır.

  • 700-2900 km derinlikleri arasında uzanan kısmında ise alt manto başlar; bu kuşakta demir ve magnezyum silikatları egemen durumdadır. Bundan dolayı alt mantonun alt kısmında yoğunluk 5.5'e kadar çıkmakta ve P dalga hızı ise 13.6 km/sn'ye ulaşır.

  •  

  •         Orta manto kısmı Üst ve Alt manto arasında bir geçiş zonu oluşturur. Manto yerkürenin toplam hacminin % 80 den fazlasını meydana getirir ve yerkabuğu hareketleri (deniz dibi yayılması, kıtaların kayması, epirojenez, orojenez, derin depremler) ile volkanizma için gerekli enerjiyle iç kuvvetlerin kaynağım teşkil eder.



3. Çekirdek (Nife):

  • 3. Çekirdek (Nife):

  •         Dünyamızın en iç kısmını oluşturur. En kalın geosferdir. Mantodan Wiechert - Gutenberg kesintisiyle ayrılır. 2890 kilometre derinlikten dünyanın merkezine (6370 km) kadar uzanır; yani 3 480 kilometre kalınlıktadır. Yoğunluğu dış sınırında 10, dünyanın merkezi kısmında ise 13 kadardır. Esas olarak demir ve nikelden yapılmış olduğu sanılmaktadır. Çekirdek, eski literatürde Nife terimiyle açıklanan kısma karşılık gelir. Deprem dalgalarının yayılışına dayanmak yoluyla yapılan araştırmalar, çekirdeğin iki kısımdan meydana geldiğini göstermektedir: 



    Çekirdek, dış çekirdek ve iç çekirdek olmak üzere iki kısma ayrılır. Dış çekirdek. 2890-5000 kilometre arasında yer alır (kalınlığı 2 110 km). Burada yoğunluk 5.5'den 10'a kadar çıkar ve P dalga hızı ise 13.6 km/sn'den 8.1 km/sn'ye düşer. Enine deprem dalgaları (S dalgaları) bu kısma sokulmadıklarından, dış çekirdeğin sıvı olduğu sonucuna varılmıştır. İç çekirdek ise 5000-6370 kilometreler arasında, yani dünyamızın tam merkezinde yer alır ve katıdır.  Kalınlığı 1370 kilometredir. Dış ve iç çekirdek arasındaki yoğunluk 12.3, sıcaklık ise 4300°C'yi bulur. Dış ve iç çekirdek arasındaki en önemli fark, dış çekirdekte demir/nikel karışımı magma ergimiş hâlde, iç kısımda ise çok yüksek basınç etkisiyle kristal hâlinde olmasıdır, iç çekirdekte yoğunluk 13.6, sıcaklık ise 4500°C'yi aşar ( 6300°C).

  •     Çekirdek, dış çekirdek ve iç çekirdek olmak üzere iki kısma ayrılır. Dış çekirdek. 2890-5000 kilometre arasında yer alır (kalınlığı 2 110 km). Burada yoğunluk 5.5'den 10'a kadar çıkar ve P dalga hızı ise 13.6 km/sn'den 8.1 km/sn'ye düşer. Enine deprem dalgaları (S dalgaları) bu kısma sokulmadıklarından, dış çekirdeğin sıvı olduğu sonucuna varılmıştır. İç çekirdek ise 5000-6370 kilometreler arasında, yani dünyamızın tam merkezinde yer alır ve katıdır.  Kalınlığı 1370 kilometredir. Dış ve iç çekirdek arasındaki yoğunluk 12.3, sıcaklık ise 4300°C'yi bulur. Dış ve iç çekirdek arasındaki en önemli fark, dış çekirdekte demir/nikel karışımı magma ergimiş hâlde, iç kısımda ise çok yüksek basınç etkisiyle kristal hâlinde olmasıdır, iç çekirdekte yoğunluk 13.6, sıcaklık ise 4500°C'yi aşar ( 6300°C).

  •  

  •         Yukarıda da görüldüğü gibi, yerkürenin yoğunluğu yeryüzünden mantoya doğru artmaktadır. Granitik yerkabuğunda 2.7 - 2.8 gr/cm3 civarında olan yoğunluk merkezde 13 gr/cm3 ü bulmaktadır



Yoğunluk artışı sürekli ve tedrici değildir; belirli derinliklerde ani yoğunluk artışları görülür. Bu derinliklerden biri Mohorovicic kesintisi veya kısaca Moho kesintisi olarak adlandıran ve yerkabuğu ile manto arasındaki sınıra tekabül eden derinliktir. Mantodan çekirdeğe geçişte de bu şekilde bir ani yoğunluk artışı görülür. Mantonun alt zonunda 6 gr/cm3 e yakın olan yoğunluk çekirdeğin üst sınırında birden 10 gr/cm3 e çıkar. Ani yoğunluk artışının görüldüğü bu sınıra da Wiechert-Gutenberg kesintisi denir.

  • Yoğunluk artışı sürekli ve tedrici değildir; belirli derinliklerde ani yoğunluk artışları görülür. Bu derinliklerden biri Mohorovicic kesintisi veya kısaca Moho kesintisi olarak adlandıran ve yerkabuğu ile manto arasındaki sınıra tekabül eden derinliktir. Mantodan çekirdeğe geçişte de bu şekilde bir ani yoğunluk artışı görülür. Mantonun alt zonunda 6 gr/cm3 e yakın olan yoğunluk çekirdeğin üst sınırında birden 10 gr/cm3 e çıkar. Ani yoğunluk artışının görüldüğü bu sınıra da Wiechert-Gutenberg kesintisi denir.

  •  

  •         Yerkürenin merkezine doğru gidildikçe, yoğunluk değerleri gibi, sıcaklık ve basınç değerleri de artar. Ancak sıcaklığın ve basıncın birim mesafedeki artış değerleri, yani gradyanlan sabit değildir. Tablo 4 de yerkürenin çeşitli derinliklerindeki tahmini sıcaklık ve basınç değerleri gösterilmiştir.Yerküreyle ilgili bu kısa bilgiden sonra şimdi yerkabuğu hareketlerine geçebiliriz. Yerkabuğu hareketleri daha önce de belirtildiği gibi iç kuvvetlere bağlı olarak meydana gelirler. Aşağıda bu hareketlerden epirojenik hareketler, orojenik hareketler, faylanmalar ve depremler ayrı ayrı ele alınıp inceleneceklerdir. Levha hareketleri ise, orojenik hareketlere veya orojeneze yol açmaları nedeniyle orojenik hareketler içinde gözden geçirileceklerdir



  • Dünya’nın Oluşumu ve İç Yapısı

  • Güneş Sistemi’nin Oluşumu

  • Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir.

  • Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır.





















Yerkabuğunu Oluşturan Taşlar

  • Yerkabuğunu Oluşturan Taşlar

  • Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır.

  • Püskürük (Volkanik) Taşlar

  • Tortul Taşlar

  • Başkalaşmış (Metamorfik) Taşlar

  • UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir.

  • Püskürük (Volkanik) Taşlar

  • Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır.

  • Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.

  • Dış Püskürük Taşlar

  • İç Püskürük Taşlar



Dış Püskürük Taşlar

  • Dış Püskürük Taşlar

  • Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür.

  • Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır.

  • Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur.

  • Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir.

  • Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir.



İç Püskürük Taşlar

  • İç Püskürük Taşlar

  • Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir.

  • Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir.

  • Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur.

  • Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır.

  • Tortul Taşlar

  • Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır.

  • Kimyasal Tortul Taşlar

  • Organik Tortul Taşlar

  • Fiziksel Tortul Taşlar

  • Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil d



Kimyasal Tortul Taşlar

  • Kimyasal Tortul Taşlar

  • Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır.

  • Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir.

  • Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır.

  • Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır.

  • Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır.



Organik Tortul Taşlar

  • Organik Tortul Taşlar

  • Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür.

  • Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir.

  • Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir.

  • Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır.

  • Fiziksel (Mekanik) Tortul Taşlar

  • Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur.

  • Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır.

  • Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır.

  • Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır.

  • Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur



Başkalaşmış (Metamorfik) Taşlar :

  • Başkalaşmış (Metamorfik) Taşlar :

  • Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır.

  • Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur.

  • Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur.

  • Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur.



Yeraltı Zenginliklerinin Oluşumu

  • Yeraltı Zenginliklerinin Oluşumu

  • Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır:

  • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir.

  • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu.

  • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu.



Download 445 b.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling