Yuqori darajali tenglamalar


Misol-3. (x2–4x+6)2–4(x2–4x+6)+6=x. Mashqlar


Download 31.72 Kb.
bet4/4
Sana04.01.2023
Hajmi31.72 Kb.
#1076968
1   2   3   4
Bog'liq
12-YUQORI DARAJALI TENGLAMALAR

Misol-3. (x2–4x+6)2–4(x2–4x+6)+6=x.


Mashqlar
Bikvadrat tenglamalarni yeching.

6.65. t4 – 2t2– 3=0

6.66.2x4 – 9x2+4=0

6.67.5 y4 – 5y2+2=0

6.68.x4 – 4x2+ 4=0

Qaytma tenglamalarni yeching.



a)x4+5x3+2x2+5x+1=0

b)2x4+3x3–3x2+3x+2=0

d)4x4+2x3+3x2+2x+4=0

e)3x4–2x3+x2–2x+3=0



6.94. f(f(x)) = xko‘rinishidagitenglamaniyeching.

a) (x2+2x–5)2+2(x2+2x–5)–5=x

b) (x2–8x+18)2–8(x2–8x+18)+18=x

d) (x2–3x+3)2–3(x2–3x+3)+3=x

e) (x2–x–3)2–(x2–x–3)–3=x



12-mavzu.Bikvadrat tenglama. Qaytma tenglama. f(f(x)) = x ko‘rinishidagi tenglama. Mashqlar
Bikvadrat tenglamalarni yeching.

6.65. t4 – 2t2– 3=0

6.66. 2x4 – 9x2+4=0

6.67. 5 y4 – 5y2+2=0

6.68. x4 – 4x2+ 4=0

Qaytma tenglamalarni yeching.

a)x4+5x3+2x2+5x+1=0

b) 2x4+3x3–3x2+3x+2=0

d) 4x4+2x3+3x2+2x+4=0

e) 3x4–2x3+x2–2x+3=0



Bezu1 teoremasi
P(x) ko‘phadnix–aikkihadgabo‘lgandabo‘linmaQ(x) va qoldiqR(x) bo‘lsin:
P(x) = (x–a) Q(x) + R(x).
Agarbumunosabatgax=aqo‘yilsa,P(a) = 0 ∙ Q(a) +R(a) = R(a) = rhosilbo‘ladi.Shutariqaushbuteoremaisbotlanadi:
Teorema (Bezu). P(x) = a0xn + a1xn–1 + ... + an–1x + anko‘phadnix–aga(a  0)bo‘lishdanchiqadiganrqoldiqshuko‘phadningx = adagiqiymatigateng,r = P(a).
Misol-1. 1)x5+x+20nix+2gabo‘lishdanchiqadiganqoldiqr=(–2)5+(–2)+20= –14.
2)x5+x+34nix+2gabo‘lishdanchiqadiganqoldiq r=(–2)5+(–2)+34=0.Demak, x=–2soni shu ko‘phadning ildizi.
Natijalar.nNbo‘lganda:
1) xn–anikkihad x–a ga bo‘linadi. Haqiqatan, P(a)=an–an=0;
2)xn+anikkihadx–agabo‘linmaydi.Haqiqatan,P(a)=an+an=2an0;
3)x2n–a2nikkihadx+agabo‘linadi.Haqiqatan,P(–a)=(–a)2n–a2n=0;
4)x2n+1–a2n+1ikkihadx+agabo‘linmaydi.Haqiqatan,P(–a)=(–a)2n+1–a2n+1=–2a2n+10;
5)x2n+1+a2n+1ikkihadx+agabo‘linadi.Haqiqatan,P(–a)=(–a)2n+1+a2n+1=0;
6)x2n+a2nikkihadx+agabo‘linmaydi.Haqiqatan,P(–a)=a2n+a2n=2a2n0.


Gorner sxemasi
P(x) = a0xn + a1xn–1 + ... + an–1x + anko‘phadnix–aga(a  0)bo‘lishdanchiqadiganrqoldiqni aniqlashniGorner2sxemasi debataluvchiusulniko‘rib chiqamiz.
P(x) = (x–a) Q(x) + r (1)
bo‘lsin. Bunda Q(x) = b0xn–1 + b1n–2x+... + bn–1bo‘lsin.
(1)daxningbirxildarajalarioldidagikoeffitsiyentlarnitenglashtiribquyidagigaegabo‘lamiz:
a0=b0; a1=b1–ab0; a2=b2–ab1; … an–1=bn–1–abn–2; an=r–abn–1.
Bundanko‘rinadiki,b0=a0,bk=abk–1+ak,k = 1,2,...,n–1,r = an+abn–1.
Bo‘linmavaqoldiq quyidagi jadvalyordamidatopiladi:




a0

a1

a2



an–1

an

a




ab0+a1

ab1+a2



abn-2+a1

abn-1+an




a0=b0

b1

b2



bn–1

r



Misol-2. x3+4x2–3x+5ko‘phadniGornersxemasidanfoydalanibx–1 gabo‘lishnibajaramiz:




a0

a1

a2

a3




1

4

3

5

1




ab0+a1

ab1+a2

ab2+a3




1

5

2

7




a0=b0

b1

b2

r

Demak,x3+4x2–3x+5=(x–1)(x2+5x+2)+7.
Misol-3. P3(x)=x3–3x2+5x+7 ni2x+1 ga bo‘lishdanhosil bo‘lgan qoldiqni toping.
Yechish. .


Teorema-2. Agar a soni P(x) ko‘phadning ildizi bo‘lsa, P(x) ko‘phad x–a ikkihadga qoldiqsiz bo‘linadi.
Isbot.Bezuteoremasigako‘ra,P(x)nix–agabo‘lishdanchiqadiganqoldiqP(a)gateng,shartbo‘yichaesaP(a)=0.Isbotlandi.


Ko‘phadni ildizi
Teorema-2 P(x)=0tenglamaniyechishmasalasiniP(x)ko‘phadnichiziqliko‘paytuvchilargaajratishmasalasigakeltirishimkoniniberadi.
Natija-1. AgarP(x) ko‘phadharxila1,...,anildizlargaegabo‘lsa,u (x–a1)∙...∙(x–an)ko‘paytmaga qoldiqsizbo‘linadi.
Natija-2. n-darajaliko‘phadntadanortiqharxilildizgaega bo‘la olmaydi.


Misol-3. (x2–4x+6)2–4(x2–4x+6)+6=x.


Mashqlar
6.152.P(x)ko‘phad D(x)ko‘phadgabo‘linadimi:

a)P(x)=x100–3x+2,D(x)=x–1

b)P(x)=x100–3x+2,D(x)=x+1

d)P(x)=x100–3x2+2,D(x)=x2–1

e)P(x)=x100–3x+2,D(x)=2x2–1

6.155. Bo‘lishdagi qoldiqni toping:

a) x4–3x2+1 ni x–2 ga

b)x5–4x3+x2nix–3ga

d) x5–4x3–x2+1ni2x–3ga

e) x4–3x3+x2–1 ni3x–4 ga

6.156. m ning qanday qiymatlarida3x4–2x3–m2x–2ko‘phadx–2gaqoldiqsizbo‘linadi?
6.157.mningqandayqiymatlarida3x3–4x2–mx–1ko‘phadx+1gabo‘linmaydi?
6.158.avabningqandayqiymatlarida2x4+ax3+bx–2ko‘phadx2–x–2uchhadgaqoldiqsizbo‘linadi?
6.159.mvanningqandayqiymatlaridax3+mx+nko‘phadx2+3x+10uchhadgaqoldiqsizbo‘linadi?
6.162.GornersxemasiyordamidaP(x)ko‘phadniD(x)ikkihadgaqoldiqlibo‘ling:

a)P(x)=x2–5x–7,D(x)=x–1

b) P(x)=x3–3x2+5x–6, D(x)=x–2

d) P(x)=2x4–3x2–5x+2, D(x)=x+1

e) P(x)=3x5–4x3–x+1, D(x)=x+3

f) P(x)=3x6–4x5–x4+x3–x2–1, D(x)=x–3

g) P(x)=x5–x2–5x–6, D(x)=x–2

h) P(x)=x4–x3+2x2–5x–42, D(x)=x+2

i) P(x)=x5–4x2+5x–3, D(x)=x–3




1EtyenBezu(1730 – 1783) – fransuzmatematigi

2HornerUilyam(1786–1837) – inglizmatematigi

Download 31.72 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling