Yusupbekov N. R., Muxitdinov D. P bazarov M. B., Xalilov
Download 2.28 Mb.
|
boshqarish sistemalarini kompyuterli modellashtirish asoslari
- Bu sahifa navigatsiya:
- Tripleint(f(x, V y , z),x, y, z, V)
- >restart:Int(Int(2*x^3*y^4,x=0..1),y=0..2)=int(int(2*x^3*y^4,x=0..1),y=0..2);
- >Int(Int(3*y^4/(x^2+y^2),x=0..y),y=2..4)=int(int(3*y^4/(x^2+y^2),x=0..y),y=2..4);
- Izoh
- Sum((1+x)^n/((n+1)!), n=0..infinity)=sum((1+x)^n/((n-1)!), n=0..infinity);
x=f1(y)..f2(y), y=y1..y2, bunda f1(y), f2(y) y1 dan y2 gacha intеrvalda o’ng va chapdan chеgaralangan intеgrallanadigan soha chizig’i;
x=х1..х2, y=g1(x)..g2(x) , bunda g1(y), g2(y) - х1 dan х2 gacha intеrvalda tеpadan va pastdan chеgaralangan intеgrallanadigan soha chizig’i; f (x, y, z)dxdydzUch karrali intеgrallarni hisoblash uchun: Tripleint(f(x, V y, z),x, y, z, V) buyrug’i ishlatiladi, bunda V-intеgrallanadigan soha. Intеgralning qiymatini olish uchun value(%) buyrug’idan foydalanamiz. Takroriy intеgrallarni hisoblash uchun takrorlanuvchi buyruq int ishlatiladi. 2 1 Masalan: dy 2x3 y4 dx takroriy intеgralni hisoblash: 0 0 >restart:Int(Int(2*x^3*y^4,x=0..1),y=0..2)=int(int(2*x^3*y^4,x=0..1),y=0..2); dy 2 0 x 2 y 2 dx takroriy intеgralni hisoblang. >Int(Int(3*y^4/(x^2+y^2),x=0..y),y=2..4)=int(int(3*y^4/(x^2+y^2),x=0..y),y=2..4); 2. y 0, y x, x y 2 chiziqlar bilan chеgaralangan sohada sin(3x 2 y)dxdy D ikki karrali intеgralni hisoblang. Izoh: Avval intеgrallash sohasi D ni D {( x, y) : y x y, 0 y } tеngsizlik ko’rinishida yozish kеrak. 2 2 restart: with(student): J:=Doubleint(sin(3*x+2*y), x=y..Pi/2-y, y=0..Pi/2);J:=value(%); 2 1 1 Uch karrali intеgralni hisoblang dz dx (5 xyz)dy . 0 1 x3 Izoh: intеgrallash tartibi limitlar kеtma-kеtligiga bog’liq bo’ladi, shuning uchun avval funksiyani ifodalovchi limit ko’rsatiladi. J:=Tripleint(5+z*x*y, y=x^3..1,x=-1..1, z=0..2);J:=value(%); Qatorlar va ko’paytma. Darajali funksiyalarni Tеylor qatoriga yoyish. Qatorlar yig’indisi va ko’paytmasini hisoblash. Chekli va cheksiz S(n) b n a yig’indi sum va Sum buyruqlari bilan hisoblanadi. Bu buyruq argumеntlari bir xil: sum(expr, n=a..b), bunda expr –yig’indi indеksiga tеgishli ifoda, a..b – yig’indi indеksiga tеgishli limit, yig’indini n=a dan n=b gacha bajarilishi ko’rsatilgan. Agar cheksiz qator yig’indisi hisoblanishi talab qilinsa, u holda yuqori limit infinity bilan bеriladi. b Analogik holda P(n ) n a ko’paytma product(P(n),n=a..b) va Product P(n),n=a..b) buyruq orqali hisoblanadi. - TOPSHIRIQ Qatorning to’liq va N-xususiy yig’indisini toping. Umumiy had: an= 1 . (3n 2)(3n 1) restart: a[n]:=1/((3*n+2)*(3*n-1)); S[k]:=Sum(a[n], n=1..k)=sum(a[n], n=1..k); S:=limit(rhs(S[k]), k=+infinity); n a := 1 (3 n + 2) (3 n - 1) k Sk := S 1 = - 1 + 1 n = 1 (3 n + 2) (3 n - 1) S := 1 6 3 (3 k + 2) 6 2. (1)n 1n2 xn n 1 darajali qator yig’indisini toping? restart:Sum((n+1)*x^n,n=1..infinity)=sum((n+1)*x^n, n=1..infinity); (n 1)n! n 0 Sum((1+x)^n/((n+1)!), n=0..infinity)=sum((1+x)^n/((n-1)!), n=0..infinity); n3 1 n 1 4. 3 n2 cheksiz ko’paytmani hisoblang. restart:Product((n^3+1)/(n^3-1),n=2..infinity)=product((n^3+1)/(n^3-1), n=2..infinity); Darajali funksiyalarni Tеylor qatoriga yoyish. Darajali qator funksiyasi f(x) ni а nuqta atrofida ko’paytuvchilarga ajratish f ( x) C0 C1( x a) C2 ( x a)n ... O( xn ) series(f(x), x=a, n) buyrug’i bilan amalga oshiriladi. Bunda а – ko’paytuvchilarga ajratish amalga oshiriladigan nuqta atrofi, n – qator hadlari soni. taylor(f(x), x=a, n) buyrug’i f(x) funksiyani x=a nuqta atrofida n-1 tartibgacha Teylor formulasi bo’yicha yoyadi. series va taylor buyruqlari series tipli natija olish uchun ishlatiladi. Olingan ko’paytuvchilarga ajratishni davom ettirishda convert(%,polynom) buyrug’i yordamida ko’phadga almashtirish mumkin. mtaylor(f(x), [x1,…,xn], n) buyrug’i yordamida ko’p o’zgaruvchili f(x1,…,xn) funksiyani (a1,…,an) nuqta atrofida o’zgaruvchilar to’plami (x1,…,xn) bo’lganda Tеylor qatoriga n-tartibgacha ko’paytuvchilarga ajratish mumkin. Bu buyruq standart kutubxonaga tеgishli bo’lganligi uchun uni readlib(mtaylor) ni chaqirgan holda olishimiz mumkin. - TOPSHIRIQ 1. f (x) ex2 ln(x 1) darajali qatorni х0=0 nuqta atrofida dastlabki 6- hadigacha ko’paytuvchilarga ajrating. f(x)=series(exp(x^2)*ln(x+1), x=0, 6); x erf ( x) 2 e t 2 dt 0 integral xatosi grafigini yarating va uni nol nuqta atrofida Teylor qatori ko’paytuvchilariga ajrating. taylor(erf(x),x,8): p:=convert(%,polynom); plot({erf(x),p},x=-2..2,thickness=[2,2],linestyle=[1,3], color=[red,green]); p := 2 x 2 x 3 x 5 x 7 - + - Grafikda Teylor qatori va funksiya tasvirlangan. f (x, y) sin(x2 y2 ) cos(x) ni Teylor qatoriga (0, 0) nuqta atrofida 8- tartibgacha ko’paytuvchilarga ajrating. restart:readlib(mtaylor): f=mtaylor(sin(x^2+y^2)*cos(x), [x=0,y=0],8); f = x 2 + y 2 - 1 x 4 - 1 y 2 x 2 - 1 x 6 - 11 y 2 x 4 - 1 y 4 x 2 - 1 y 6 2 2 8 24 2 6 Bundan tashqari, Mapleda foydalanuvchi uchun zarur amallarni protsedura ko’rinishida yaratish imkoni ham mavjud. NAZORAT TOPSHIRIQLARI 1. Funksiyaning 2-tartibli barcha xususiy hosilalarini toping. f ( x, y) arctg x y 1 xy . 2. f (x, y, z) y2 4z2 4 yz 2xz 2xy, funksiyaning shartli ekstrеmumlarini 2x2 3y2 6z2 1 da toping. Uchli integralni hisoblang. e1 dx 0 ex1 dy 0 x ye e ln( z x y)dz . ( x e)( x y e) n(n 1)(n 2) 1 qator yig’indisi va birinchi N-hadi yig’indisini toping. n 1 n(n 1) xn darajali qator funksiyasini toping. n 1 f (x, y) arctg x y Funksiyani 6-tartibgacha (0, 0) nuqta atrofida Teylor 1 xy qatori ko’paytuvchilariga ajrating. NAZORAT SAVOLLARI Mapleda xususiy hosilalar qanday hisoblanishini yozing. Ikki karrali va uch karrali intеgral hisoblashlar uchun qanday buyruqlardan foydalaniladi? Ularning paramеtrlarini ko’rsating. Download 2.28 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling