Задача со свободной границей для квазилинейного уравнения реакции-диффузии, возникающих в экологии


Дихотомия распространения-исчезновения


Download 66.04 Kb.
bet3/3
Sana22.11.2023
Hajmi66.04 Kb.
#1793463
TuriЗадача
1   2   3
Bog'liq
UZM2023

3 Дихотомия распространения-исчезновения


Этот раздел посвящен дихотомии распространения-исчезновения видов в окружающей среде.


Позволять есть решение задачи (2)-(6). Тогда справедливо следующее.
Исчезновение: и
Распространение: и равномерно для любого ограниченного множества где является единственным положительным решением следующей задачи

Доказательство аналогично доказательству теоремы 3.5 в [27].
Литература



  1. Asrakulova D.S., Elmurodov A.N. A reaction-diffusion-advection competition model with a free boundary, Uzb. Math. J. 2021. No.3, 25-37.

  2. Cannon J.R. The One dimensional heat equation. Cambridge: Cambridge University Press, 1984. – 500 p.

  3. Cantrell R.S., Cosner C. Spatial ecology via reaction-diffusion equations. John Wiley and Sons Ltd., Chichester, UK, 2003. – 428 p.

  4. Crank J. Free and Moving Boundary Problem, Oxford, 1984. – 425 p.

  5. Chen X., Friedman A. A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal. 2000, Vol.32, pp. 778-800.

  6. Ciliberto C. Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili Ricerche di Matem. 1954, 82. pp. 40-75.

  7. Du Y.H., Lin Z.G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 2010, Vol. 42, pp. 377-405.

  8. Du Y., Lin Z.G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor Discrete Contin. Dyn. Syst. Ser. B. 2014, 19. pp. 3105-3132.

  9. Friedman A. Partial Differential Equations of Parabolic Type. Courier Dover Publications, 2008.

  10. Fasano A. Mathematical Models of some diffusive processes with free boundaries, 2008, – 137 p.

  11. Gupta S. C. The Classical Stefan Problem: Basic concepts, modelling and analysis with quasi-analytical solutions and methods, Elsevier, 2017, – 717 p.

  12. Gu H., Lin Z. G., Lou B. D. Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 2015, Vol. 269, pp. 1714-1768.

  13. Kaneko Y., Matsuzawa H. Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations // J. Math. Anal. Appl., 2015, Vol. 428, No. 1, pp. 43-76.

  14. Kruzhkov S.N. Nonlinear parabolic equations with two variables, Proc. Moscow Mat. Soc.1967, 16, 329-346.

  15. Ladyzenskaja O.A., Solonnikov V.A and Ural’ceva N.N. Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1968.

  16. Lin Z.G. A free boundary problem for a predator-prey model, Nonlinearity, 2007, Vol.20, No.8, pp. 1883-1892.

  17. Leung A. W. Nonlinear systems of partial differential equations: applications to life and physical sciences, World Scientific, 2009, – 541 p.

  18. Meyrmanov A. M. Zadacha Stefana. Novosibirsk: Nauka, 1986, -240 p. (Russian).

  19. Murray J.D. Mathematical Biology II: Spatial Models and Biomedical Applications., Springer, Berlin 2003, – 551 p.

  20. Okubo A., Levin S.A. Diffusion and Ecological Problems. Springer, 2002, – 470 p.

  21. Pao C.V. Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992, – 777 p.

  22. Takhirov J.O., Rasulov M.S. Problem with free boundary for systems of equations of reaction-diffusion type. Ukr. Math. J. 2018, Vol.69. pp.1968-1980.

  23. Takhirov J.O. A free boundary problem for a reaction-diffusion equation in biology, Indian J. Pure Appl.Math. 2019, Vol.50, pp.95-112.

  24. Wang R., Wang L and Wang Zh. Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math.Anal.Appl.2018. 467, pp.1233-1257.

  25. Wang M., Zhao J. Free Boundary Problems for a Lotka-Volterra Competition System, Jour. Dyn. Diff. Eq.,2014, Vol.26, pp.1-21.

  26. Wang M., Zhang Y. Dynamics for a two-species competitive Keller-Segel chemotaxis system with a free boundary, J. Math. Anal. Appl, 2021, Vol 502. pp.73-82.

  27. Zhou L. and etc. A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient. Acta Appl. Math. 2016, Vol.243, pp.189-216.

Download 66.04 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling