Ziyodullayeva Dilnoza
Gradient Descent
Kontur - Motivatsiya
- Gradient tushish algoritmi
- Muammolar va muqobillar
- Stokastik gradient tushishi
- Parallel gradient tushishi
- HOGWILD!
Motivatsiya - Funktsiya konveks bo'lsa, global minimal/maksimani topish uchun yaxshi
- Agar funktsiya qavariq bo'lmasa, mahalliy minimal/maksimani topish yaxshidir
- U Mashinani o'rganishda ko'plab modellarni optimallashtirish uchun ishlatiladi:
U quyidagilar bilan birgalikda qo'llaniladi:
- Neyron tarmoqlari
- Chiziqli regressiya
- Logistik regressiya
- Orqaga tarqalish algoritmi
- Vektorli mashinalarni qo'llab-quvvatlash
Funktsiyaga misol - Derivative
- Partial Derivative
- Gradient Vector
Derivative - Slope of the tangent line
𝑓(𝑥)=𝑥𝗍2
𝑓′(𝑥) =𝑑𝑓/𝑑𝑥 =2𝑥
𝑓′′(𝑥)=𝑑𝗍2 𝑓/𝑑𝑥 = 2
Partial Derivative – Multivariate Functions
For multivariate functions (e.g two variables) we need partial derivatives
– one per dimension. Examples of multivariate functions:
𝑓(𝑥,𝑦)=𝑥𝗍2 +𝑦𝗍2
𝑓(𝑥,𝑦)=cos𝗍2 (𝑥) +𝑦𝗍2
𝑓(𝑥,𝑦)=cos𝗍2 (𝑥) +cos𝗍2 (𝑦)
Convex!
𝑓(𝑥,𝑦)=−𝑥𝗍2 −𝑦𝗍2
Concave!
Partial Derivative – Cont’d
To visualize the partial derivative for each of the dimensions x and y, we can imagine a plane that “cuts” our surface along the two dimensions and once again we get the slope of the tangent line.
surface: 𝑓(𝑥,𝑦)=9−𝑥𝗍2 −𝑦𝗍2
plane: 𝑦=1
cut: 𝑓(𝑥,1)=8−𝑥𝗍2
slope / derivative of cut: 𝑓′(𝑥)=−2𝑥
Partial Derivative – Cont’d 2
If we partially differentiate a function with respect to x, we pretend y is constant
𝑓(𝑥,𝑦)=9−𝑥𝗍2 −𝑦𝗍2
𝑓(𝑥,𝑦)=9−𝑥𝗍2 −𝑐𝗍2
𝑓↓𝑥 =𝜕𝑓/𝜕𝑥 =−2𝑥
𝑓(𝑥,𝑦)=9−𝑐𝗍2 −𝑦𝗍2
𝑓↓𝑦 =𝜕𝑓/𝜕𝑦 =−2𝑦
Do'stlaringiz bilan baham: |