3- петаваттный лазер вместо синхротрона


Download 481 Kb.
bet1/2
Sana04.01.2023
Hajmi481 Kb.
#1079057
  1   2

3- Петаваттный лазер вместо синхротрона
Российские физики создали компактный петаваттный (10 15 Вт) лазерный комплекс. Подобные мощные лазерные установки открывают широкие возможности для исследования экстремальных состояний вещества, создания «настольных» лазерных ускорителей заряженных частиц, способных заменить огромные дорогостоящие ускорители, и разработок новых эффективных методов диагностики лечения.
Лазерный комплекс, разработанный в Институте прикладной физики РАН (ИПФ РАН, Н. Новгород) в содружестве с Российским федеральным ядерным центром (РФЯЦ, г. Саров), входит в число пяти наиболее мощных лазерных систем в мире. Его пиковая мощность 0.56ПВт, длительность импульса 43 фс (1 фс = 10 -15 с).

Как пояснил во время своего доклада на одном из последних заседаний Президиума РАН член-корреспондент РАН Александр Сергеев (ИПФ РАН), физика сверхкоротких лазерных импульсов – очень быстро развивающееся направление современной науки, что обусловлено беспрецедентными возможностями ее приложений, таких как управление процессами в физических, химических и биологических системах на молекулярном уровне, коммуникационные технологии с рекордной плотностью передачи информации, прецизионная микрообработка материалов и др. Профессор Сергеев особо отметил, что оптика сверхкоротких оптических импульсов является основой для развития стратегически важной области – физики сверхсильных полей и порождаемых ими экстремальных состояний вещества. Мощные – терраваттные (1012 Вт) и петаваттные (1015 Вт) фемтосекундные лазерные комплексы способны генерировать оптические поля с интенсивностями более 1019 Вт/см2, образующиеся при фокусировке таких лазерных импульсов. Эти поля существенно превосходят уровень внутриатомных полей, что позволяет создавать состояния вещества с экстремальными свойствами. Подобные лазерные установки рассматриваются как инструмент для моделирования процессов, протекающих в ядерных и термоядерных реакциях.

Особенность лазерной установки, созданной физиками из Нижнего Новгорода и Сарова – использование так называемых параметрических усилителей света вместо обычных лазерных. Дело в том, что традиционно применяемый принцип усиления фемтосекундных лазерных импульсов на неодимовом стекле имеет ограничения на пути увеличения мощности лазерных комплексов. Поэтому физики ищут альтернативные способы преодоления петаваттного барьера. Исследователи ИПФ РАН и РФЯЦ впервые предложили использовать для параметрического усиления света нелинейный кристалл DKDP (KD2PO4 – дидейтерофосфат калия). Достигнутая мощность 0.56 ПВт уже открывает возможности для проведения исследования экстремальных состояний вещества и для медицинских и других специальных приложений. Разработчики подчеркивают, что оригинальная архитектура лазера позволяет масштабировать комплекс до мощности 10 ПВт.

Александр Сергеев отметил, что уже имеющиеся в лабораториях мира «источники мощных фемтосекундных импульсов способны генерировать в процессах нелинейного взаимодействия с веществом потоки ускоренных частиц с энергиями, сравнимыми с получаемыми на ускорительной технике – синхротронах и линейных ускорителях. При этом компактность и дешевизна лазерных установок в сравнении с традиционными ускорителями и перспективы дальнейшего масштабирования мощности фемтосекундного оптического излучения позволяют сегодня начать серьезное обсуждение проектов, казавшихся еще вчера фантастическими, таких как пробой вакуума в сфокусированном световом пучке или получение мини черных дыр в лазерной лаборатории». Он также отметил использование экстремальных оптических полей в медицине: протонографии, позитронно-эмиссионной томографии и адронной терапии.

Директор Института физических проблем им. П. Л. Капицы РАН академик Александр Андреев в ходе обсуждения доклада сказал: «Огромное впечатление на меня произвела протонная терапия (разработанная в ИПФ РАН- ред.). Я считаю, что именно так сейчас надо заниматься фундаментальной наукой».

Заместитель директора Института химической физики РАН доктор физико-математических наук Олег Саркисов отметил, что «фемтосекундные импульсы позволяют изучать изменения внутримолекулярных процессов – это произвело настоящую революцию». Он добавил, что «развит качественно другой вид химических превращений, основанный на регулярном, синхронизированном движении ядер. На основе многофотонных процессов поглощения света разработаны фемтосекундные методы, позволяющие производить операции внутри клеток».



4-Эколо́гия (от др.-греч. οἶκος — жилище, местопребывание и λόγος — учение) — естественная наука (раздел биологии) о взаимодействиях живых организмов между собой и с их средой обитания, об организации и функционировании биосистем различных уровней (популяции, сообщества, экосистемы)[1].
В просторечии под экологией часто понимается состояние окружающей среды, а под экологическими проблемами — вопросы охраны окружающей среды от воздействия антропогенных факторов[2][3][4]. Экологизм — общественное движение за усиление мер охраны окружающей среды и за предотвращение разрушения среды обитания.
Британская энциклопедия рассматривает в качестве первых истоков экологии как науки работы древнегреческих естествоиспытателей, в первую очередь Теофраста, описывавшего отношения организмов между собой и с окружающей неживой природой. Дальнейшее развитие этой области науки дали ранние исследователи физиологии растений и животных[5].
Одна из ключевых составляющих экологии как науки, концепция экологической пирамиды, интуитивно сформулированная ещё средневековым арабским мыслителем Аль-Джахизом, в 1881 году нашла отражение в работе К. Земпера «Воздействие естественных условий существования на жизнь животных», которая считается одним из самых ранних исследования перераспределения энергии в природе[6].

Термин



Эрнст Геккель
Термин «экология» (нем. Ökologie) в 1866 году ввёл немецкий биолог Э. Г. Геккель. В книге «Общая морфология организмов» он писал об экологии как о науке, изучающей взаимоотношения живой и неживой природы[7]. В 1896 году вышел немецкий «Учебник экологической географии растений: введение в знания о растительных сообществах»[8].
Американский зоолог С. А. Форбс[en] в 1895 году определил экологию как науку об отношениях животных и растений к другим живым существам и ко всему их окружающему. Частичными или полными синонимами понятия «экология» были «этология» (определённая И. Жоффруа Сент-Илером как науку о взаимоотношениях организмов в семье и сообществе), и «гексикология» (англ. hexicology), которую Сент-Джордж Джексон Миварт в 1894 году определил как науку о взаимоотношениях организмов и окружающей среды[9]. Во второй половине века были введены в обиход также понятия «биосфера» (Э. Зюсс, 1875) и «биоценоз» (К. А. Мёбиус, 1877)[10].
А. Тенсли в 1935 году ввёл термин «экосистема», а В. Н. Сукачёв 5 лет спустя — термин «биогеоценоз»[1].

Наука


Экология как наука начала институционализироваться во втором десятилетии XX века с образованием в 1913 году Британского экологического общества, а в 1915 году — Экологического общества Америки[9]. С 1913 года в Великобритании начал выходить Journal of Ecology — первый международный рецензируемый научный журнал в этой области[11]. В первой половине XX века исследования растительных сообществ в Европе и Америке велись по разным направлениям. Европейцев в первую очередь интересовали состав, структура и распространение растительных сообществ, тогда как американские ботаники занимались вопросом развития (сукцессии) таких сообществ. Исследования экологии животного мира велись отдельно, пока американские биологи не сместили акценты, обратившись к изучению взаимодействия растительных и животных сообществ как единых биот[5]. Впервые идея, что экология как наука должна заниматься одновременно растительными и животными сообществами, была высказана в 1913 году Ч. К. Адамсом в книге «Руководство по изучению экологии животных»[11].
В 1926 году В. И. Вернадский дал современное определение понятию биосферы (как совокупности всех экосистем) и отметил влияние человека на эту систему[12]. В этот же период усилился интерес к популяционной динамике, и математические модели популяционных процессов (среди авторов — Р. Пирл, А. Лотка, В. Вольтерра) начали применяться в исследованиях взаимоотношений хищников и добычи, межвидовой конкуренции и естественной регуляции численности популяций[5].

Download 481 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling