5-amaliy mashg`ulot: Chiziqli tenglamalar sistemasini matritsaviy usulda, Kramer qoidasi va Gauss (noma’lumlarni ketma-ket yo`qotish) usuli yordamida yechish.
Ishni bаjаrish uchun nаmunа
Misоl: Tenglamalar sistemasini yeching
Yechilishi.
Sunnday qilib, berilgan tenglamalar sistemasining yechimi .
2-Misol. Kramer formulasi yordamida yeching:
bo’lganligi uchun .
3-misol. sistema yechilsin.
Bu sistemada uchta tenglama beshta nomalum bulgandan, x4 va x5 larni o’ng tomonga olib utamiz.
Misol uchun, x4 =2, x5 =1 qiymatlarni qo’ysak
sistema hosil bo’ladi. x2 =3 ekanini e’tiborga olsak,
sistemaga ega bulamiz. Birinchi tenglamani 2 ga kupaytirib,undan ikkinchi tenglamani ayirsak
hosil bo’ladi . Bundan x3 =-3/7, x2 =3, x1 =12/7
Аmаliy tоpshiriqlаr
|
Quyidagi tenglamalar sistemasini yeching va javobingizni grafikda tekshiring
1. , 2. , 3.
4. , 5. , 6.
|
|
Quyidagi tenglamalar sistemasini Gauss usulida yeching
1. , 2. , 3.
4. 5. , 6.
7. 8. 9.
|
|
Tenglamalar sistemalarini 1) Kramer formulasi 2) Matritsaviy 3) Gauss
usullarida yeching.
4)
5)
7) 8)
|
Аdаbiyotlаr ro’yхаti
Stefan Waner, Steven R. Costenoble. Finite Mathematics and Applied Calculus. Brooks/Cole cengage learning. 2011.
Will H.Moore , David A. Siegel. A Mathematics Course for Political and Social Research. Princeton university press. 2013.
Do'stlaringiz bilan baham: |