Fan: Sun’iy intellekt va neyron to’rlar Guruh 21. 06 2022-2023- o’quv yili
Download 17.32 Kb.
|
Mo\'minov Inomjon 21.06
1-topshiriq import tensorflow as tf # Kirish va chiqish ma'lumotlarini sozlang
# Kirish qatlamini ikkita neyronli va chiqish qatlamini bitta neyron bilan o'rnating x = tf.placeholder(tf.float32, shape=[None, 2]) y_true = tf.placeholder(tf.float32, shape=[None, 1]) W = tf.Variable(tf.zeros([2, 1])) b = tf.Variable(tf.zeros([1])) # Faollashtirish funktsiyasini aniqlang (bu holda sigmasimon funktsiya) y_pred = tf.sigmoid(tf.matmul(x, W) + b) # Yo'qotish funktsiyasini aniqlang (bu holda ikkilik o'zaro faoliyat entropiya) loss = tf.reduce_mean(-(y_true * tf.log(y_pred) + (1 - y_true) * tf.log(1 - y_pred))) # Optimizatorni aniqlang (bu holda gradient tushishi) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5) train_step = optimizer.minimize(loss) # O'zgaruvchilarni ishga tushiring va seansni boshlang init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # Modelni o'rgating for i in range(10000): sess.run(train_step, feed_dict={x: x_data, y_true: y_data}) # Modelni yangi ma'lumotlarda sinab ko'ring print(sess.run(y_pred, feed_dict={x: [[0.9, 0.8]]})) 2-topshiriq import numpy as np class Perceptron: def init(self, num_inputs): self.weights = np.zeros(num_inputs + 1) def predict(self, inputs): summation = np.dot(inputs, self.weights[1:]) + self.weights[0] if summation > 0: activation = 1 else: activation = 0 return activation def train(self, training_inputs, labels, num_epochs): for epoch in range(num_epochs): for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) self.weights[1:] += (label - prediction) * inputs self.weights[0] += (label - prediction) training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) labels = np.array([0, 0, 0, 1]) perceptron = Perceptron(2) perceptron.train(training_inputs, labels, 10) print(perceptron.predict(np.array([1, 1]))) # outputs 1 3-topshiriq import numpy as np import tensorflow as tf # kiritish maʼlumotlari X = [[0, 0], [0, 1], [1, 0], [1, 1]] # output data y = [[0], [1], [1], [0]] # neyron tarmoq qatlamlarini aniqlang input_layer = tf.keras.layers.Input(shape=(2,)) hidden_layer_1 = tf.keras.layers.Dense(4, activation='sigmoid')(input_layer) hidden_layer_2 = tf.keras.layers.Dense(4, activation='sigmoid')(hidden_layer_1) output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(hidden_layer_2) model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=10000) test_data = [[0, 0], [0, 1], [1, 0], [1, 1]] predictions = model.predict(test_data) print(predictions) Bajardi: Mo’minov Inomjon Qabul qildi: I.Tojimamatov Download 17.32 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling