Логический элемент


Download 384.49 Kb.
bet1/110
Sana18.06.2023
Hajmi384.49 Kb.
#1597764
  1   2   3   4   5   6   7   8   9   ...   110
Bog'liq
Answers

1.1 ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ТТЛ / ТТЛШ: Базовые логические элементы. АНАЛИЗ АМПЛИТУДНО-ПЕРЕДАТОЧНЫХ (амплитудное ИЛИ СТАТИЧЕСКОЙ) ХАРАКТЕРИСТИКИ. Статические и динамические параметры.


1.1 ЛОГІЧНІ ЕЛЕМЕНТИ ТТЛ/ТТЛШ: БАЗОВИЙ ЛОГІЧНИЙ ЕЛЕМЕНТ. АНАЛІЗ АМПЛІТУДНО-ПЕРЕДАТОЧНОЇ (АМПЛІТУДНОЇ АБО СТАТИЧНОЇ) ХАРАКТЕРИСТИКИ. СТАТИЧНІ ТА ДИНАМІЧНІ ПАРАМЕТРИ.
Логический элемент (вентиль) — это электронная схема, выполняющая некоторую простейшую логическую операцию. На рисунке приведены примеры условных графических обозначений некоторых логических элементов.
Логический элемент может быть реализован в виде от­дельной интегральной схемы. Часто интегральная схема содержит несколько логических элементов.

Логические элементы используются в устройствах цифровой электроники для выполнения простого преобразования логических сигналов.
Наиболее широко используются следующие классы логических элементов: ТТЛ(транзисторно-транзисторная логика), ТТЛШ (транзисторно-транзисторная логика с диодами Шоттки), КМОП, ЭСЛ.
Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. слева). Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и транзистор Т2 закрыт, а следовательно, закрыт и транзистор Т4, т. е. на выходе будет высокий уровень напряжения. Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор Т2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т4 и запиранию транзис­тора Т3, т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Базовый логический элемент ТТЛШ. В качестве базового элемента серии микросхем К555 использован элемент И-НЕ. На рис. 3.29,а изображена схема этого элемента, а условное графическое обозначение транзистора Шоттки приведено на рис. 3.29,6. Такой транзистор эквивалентен рассмотренной выше паре из обычного транзистора и диода Шоттки. Транзистор VT4 — обычный биполярный транзистор.





Е сли оба входных напряжения Uвх1 и Uвх2 имеют высо­кий уровень, то диоды VD3 и VD4 закрыты, транзисторы VT1, VT5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется напряжение низкого уровня, то транзисторы VT1 и VT5 закрыты, а транзисторы VT3 и VT4 открыты, и на входе имеет место напряжение низкого уровня. Полезно отме­тить, что транзисторы VT3 и VT4 образуют так называе­мый составной транзистор (схему Дарлингтона).
Амплітудно-передаточна характеристика.
При нулевом напряжении на входе элемента ТТЛ выходное напряжение соответствует высокому логическому уровню U1вых (точка А).
Увеличение входного напряжения до величины 1,1 В соответствует закрытому состоянию сложного инвертора и практически не изменяет напряжение на выходе элемента. При напряжении на входе более 1,1 В (точка В) начинает открываться транзистор VT2, а транзисторVT4 остается закрытым, т.к. его переход база-эмиттер шунтируется резистором R3. Увеличение тока через транзистор VT2 вызывает увеличение падения напряжения на резисторах R2 и R3. Выходное напряжение эмиттерного повторителя VT3 (т.е. выходное напряжение ТТЛ элемента) уменьшается с ростом падения напряжения на R2 (участок В-С).
Увеличение падения напряжения на R3 до 0,5..0,6 В приводит к открыванию транзистора VT4 (см. точку С). Все транзисторы переходят в активный режим. Малые изменения входного напряжения ( Uвх) вызывают значительное уменьшение выходного напряжения ( Uвых). На участке C-F логический элемент работает как аналоговый усилитель с коэффициентом усиления по напряжению: Ku = Uвых / Uвх.
Большинство реальных ТТЛ элементов имеют коэффициент усиления Ku в пределах от 5 до 20.
Правее точки F, когда увеличение входного напряжения приводит к насыщению транзисторов VT2 и VT4, дальнейшее изменение выходного напряжения происходить не может. Этот уровень выходного напряжения называется логическим нулем ТТЛ элементов и составляет : U0вых = 0,1...0,4 В. Точка D, лежащая на пересечении передаточной характеристики с биссектрисой первого квадранта (т.е. с прямой, на которой : Uвых = Uвх), определяет пороговый уровень напряжения Uпор (примерно 1,3..1,4 Вольта), разделяющий низкий и высокий логические уровни. Расстояния между низким логическим уровнем ТТЛ (U0 = 0,4 В) и пороговым напряжением (Uпор = 1,3 В), а также между высоким логическим уровнем ТТЛ (U1 > 3 В) и пороговым напряжением называются ЗАПАСОМ ПОМЕХОУСТОЙЧИВОСТИ. Этот запас определяет максимальное напряжение помехи на входе элемента, не изменяющее логическое состояние выхода.
Для ТТЛШ элементов характеристика имеет аналогичный характер за исключением того, что выходное напряжение логического нуля U0вых = 0,4..0,6 В, что является недостатком (следствие, уменьшенный на 0,2 Вольта запас помехоустойчивости).
Рассмотрим наиболее важные из параметров.
Б ыстродействие характеризуют временем задержки распространения сигнала tзр и максимальной рабочей частотой Fмакс. Обратимся к идеализированным временным диаграммам, соответствующим элементу НЕ (инвертору) (рис. 3.24). Через Uвх1 и Uвых1 обозначены уровни входного и выходного напряжений, соответствующие логической единице, а через Uвх0 и Uвых0 — соответствующие логическому нулю. Различают время задержки tзр10 распространения при переключении из состояния 1 в состояние 0 и при переключении из состояния 0 в состояние 1 — tзр01,а так­же среднее время задержки распространения tзр, причем Время задержки принято определять по перепадам уровней 0,5DUвхи 0,5DUвых. Максимальная ра­бочая частота Fмакс — это частота, при которой сохраня­ется работоспособность схемы. Нагрузочная способность характеризуется коэффици­ентом объединения по входу Коб и коэффициентом развет­вления по выходу Краз (иногда используют термин «коэффициент объединения по выходу»). Величина Коб — это число логических входов, величина Краз — максимальное число однотипных логических элементов, которые могут быть подключены к выходу данного логического элемен­та. Типичные значения их таковы: Коб = 2...8, Краз = 4...10. Для элементов с повышенной нагрузочной способностью Краз = 20...30.
Помехоустойчивость в статическом режиме характери­зуют напряжением Uист, которое называют статической по­мехоустойчивостью. Это такое максимально допустимое напряжение статической помехи на входе, при котором еще не происходит изменение выходных уровней логичес­кого элемента.
Важным параметром является мощность, потребляемая микросхемой от источника питания. Если эта мощность раз­лична для двух логических состояний, то часто указывают среднюю потребляемую мощность для этих состояний.
Важными являются также следующие параметры:
напряжение питания;
входные пороговые напряжения высокого и низкого уровня Uвх 1порог и Uвх 0порог, соответствующие изме­нению состояния логического элемента;
выходные напряжения высокого и низкого уровней Uвых1 и Uвых0

1.2 ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ с тремя состояниями ВЫХОДА. ПРИНЦИП ДЕЙСТВИЯ. Упорядочение работы НЕСКОЛЬКИХ ЭЛЕМЕНТОВ НА ОДНУ ОБЩУЮ ЛИНИЮ ИНТЕРФЕЙСА (МАГИСТРАЛЬНЫЕ ИНТЕРФЕЙСЫ)


1.2 ЛОГІЧНІ ЕЛЕМЕНТИ З ТРЬОМА СТАНАМИ ВИХОДУ. ПРИНЦИП ДІЇ. ВПОРЯДКУВАННЯ РОБОТИ ДЕКІЛЬКОХ ЕЛЕМЕНТІВ НА ОДНУ СПІЛЬНУ ЛІНІЮ ІНТЕРФЕЙСУ (МАГІСТРАЛЬНІ ІНТЕРФЕЙСИ)
Ч асто возникает необходимость подключения выходов нескольких цифровых микросхем к одной нагрузке. Одним из способов объединения выходов является использование в выходных каскадах микросхем транзисторов, один из выводов которых (коллектор, эмиттер, сток, исток) нику­да не подключен. Такой вывод называют открытым.
Покажем схематически (рис. 3.25), как объединяются выходы микросхем с открытым коллектором. Такую схему называют «монтажным (проводным) ИЛИ».
Если открытым является коллектор транзистора п-р-п-типа, эмиттер транзистора р-п-р-типа, сток транзи­стора с каналом n-типа, исток транзистора с каналом р-типа, то вывод обозначают символом . Если открытым является коллектор транзистора p-n-р-типа, эмиттер транзистора n-р-n-типа, сток транзистора с каналом р-типа, исток транзистора с каналом n-типа, вывод обозна­чают символом .
Выходные каскады некоторых микросхем могут рабо­тать в таком режиме, когда микросхема оказывается фактически отключенной от нагрузки. Это так называемое третье (высокоимпедансное) состояние микросхемы. Использование третьего состояния является еще одним способом объединения выходов микросхем, который широ­ко используется в вычислительной технике, при подключении к общей шине многих устройств. Приведем фрагмент схемы, поясняющей возникновение третьего состояния (рис. 3.26). Если оба транзистора закрыты, то микросхема и нагрузка фактически являются разъединенными. Наличие третьего состояния обозначают символом
П ри использовании в едином цифровом устройстве микросхем различных серий, и в особенности различных логик, может возникнуть проблема согласования уровней входных и выходных напряжений. Для указанных целей производятся специальные микросхемы, которые называют преобразователями уровня сигналов.

1.3 ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ МОТ / КМОП: Базовые логические элементы. АНАЛИЗ АМПЛИТУДНО-ПЕРЕДАТОЧНЫХ (амплитудное ИЛИ СТАТИЧЕСКОЙ) ХАРАКТЕРИСТИКИ. Статические и динамические параметры.


1.3 ЛОГІЧНІ ЕЛЕМЕНТИ МОП/КМОП: БАЗОВИЙ ЛОГІЧНИЙ ЕЛЕМЕНТ. АНАЛІЗ АМПЛІТУДНО-ПЕРЕДАТОЧНОЇ (АМПЛІТУДНОЇ АБО СТАТИЧНОЇ) ХАРАКТЕРИСТИКИ. СТАТИЧНІ ТА ДИНАМІЧНІ ПАРАМЕТРИ.
В микросхемах n-МОП и р-МОП используются ключи на МОП-транзисторах с n-каналом и динамической нагрузкой и на МОП-транзисторах с p-каналом.
Р ассмотрим базовый элемент логики п-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31). Он состоит из нагрузочного транзистора Т3 и двух управляю­щих транзисторов Т1и Т2. Если оба транзистора T1 и Т2 закрыты, то на выходе устанавливается высокий уровень напряжения. Если одно или оба напряжения и1 и и2 име­ют высокий уровень, то открывается один или оба тран­зистора Т1и Т2 и на входе устанавливается низкий уро­вень напряжения, т. е. реализуется функция
Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они от­личаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).
Р ассмотрим КМОП — логический элемент, реализую­щий функцию ИЛИ-НЕ (рис. 3.32), Если входные напря­жения имеют низкие уровни (и1 и и2 меньше порогового напряжения «-МОП-транзистора Uзипорогn), то транзисто­ры Т1и Т2 закрыты, транзисторы Т3 и Т4 открыты и вы­ходное напряжение имеет высокий уровень. Если одно или оба входных напряжения и1 и и2 имеют высокий уро­вень, превышающий Uзипорогn , то открывается один или оба транзистора Тх и Т2, а между истоком и затвором одного или обоих транзисторов Т3 и Т4 устанавливается низкое напряжение, что приводит к запиранию одного или обо­их транзисторов Т3 и Т4, а следовательно, на выходе уста­навливается низкое напряжение. Таким образом, этот элемент реализует функцию и потребляет мощность от источника питания лишь в короткие проме­жутки времени, когда происходит его переключение.





n-МОП

КМОП

При нулевом входном напряжении (Uвх = 0) канал имеет очень большое сопротивление и на выход ключа подается напряжение питания через резистор R. Выходное напряжение логической единицы (U1вых) равно напряжению питания +Е. При увеличении входного напряжения выше U' сопротивление канала постепенно уменьшается и на выход подается часть напряженияисточника питания с делителя, образованного сопротивлением канала и резистором R (участок А-В на рис. слева). Сопротивление канала не может уменьшится до нуля. При входном напряжении выше U" сопротивление канала достигает минимальной величины и дальнейшее увеличение входного напряжения не влияет на сопротивление канала.
При входном напряжении выше U" выходное напряжение логического нуля (U0вых) определяется соотношением : U0вых = Е * Rк мин / (R + Rк мин). Где : Rк – минимальное сопротивление канала.
Величины U', U" и Rк мин - определяются технологическими параметрами: степень легирования канала, степень шероховатости поверхности канала, геометрические размеры канала; а также напряжением питания электронного ключа.
На участке А-В, т.е. при входном напряжении от U' до U" электронный ключ работает как аналоговый усилитель с коэффициентом усиления Ku = Uвых / Uвх .

Точка пересечения передаточной характеристики с биссектрисой первого квадранта (точка С на рис. слева) определяет пороговое напряжение Uпор электронного ключа.


Переходная характеристика КМОП ключа приведена на рис. справа. При нулевом входном напряжении транзистор с n-каналом VT1 закрыт (сопротивление канала очень велико), а транзистор с р-каналом VT2 открыт (сопротивление канала – Rк мин ), т.к. к его затвору относительно истока приложено напряжение источника питания.
Поэтому на выходе ключа напряжение логической единицы : U1вых = +Е. При увеличении входного напряжения выше U' (точка А на рис. справа) начинает уменьшаться сопротивление канала транзистора VT1, а сопротивление канала VT2 - увеличивается. Выходное напряжение постепенно уменьшается и в конце участка А-В практически доходит до нуля (U0вых = 0) при полном закрывании транзистора VT2 и уменьшении сопротивления канала транзистора VT1 до величины Rк мин На участке А-В оба транзистора работают в активном режиме усиления аналогового сигнала с коэффициентом усиления по напряжению: Ku = Uвых / Uвх .
При этом оба канала имеют конечное сопротивление и через два транзистора течет сквозной ток от источника питания. С увеличением входного напряжения выше U" канал транзистора VT2 закрывается и ток через КМОП ключ от источника питания не потребляется. Таким образом, при входном напряжении ниже U' а также выше U" ток через КМОП ключ от источника питания практически не течет. Статическая потребляемая мошность близка к нулю. Пороговое напряжение Uпор определяется как точка пересечения передаточной характеристики с биссектрисой первого квадранта (точка С). Пороговое напряжение почти равно половине напряжения источника питания. Участок с напряжением U'- U" примерно равен 10..20% от напряжения источника питания, но имеет технологический разброс относительно середины напряжения источника питания. Поэтому входное напряжение низкого логического уровня U0вх должно быть менее 1/3 напряжения источника питания, а входное напряжение высокого логического уровня U1вх должно быть более 2/3 напряжения питания. Абсолютное значение напряжения источника питания +Е может изменяться в широких пределах от 3 до 15 Вольт. Это позволяет питать КМОП логические схемы от нестабилизированного источника питания, что значительно упрощает и удешевляет источник питания.
Характеристики рассмотренных элементов логики:

Диапазон напряжений питания, В

3..15

Диапазон рабочих температур

-40..+85

Входное напряжение (U1вх/ U0вх)

>3,15/ < 0,9

Выходное напряжение (U1вых/ U0вых)

Eп / 0,1

Входной ток, мкА (I1вх/I0вх)

< 0,3/< 0,3

Выходной ток, мА (I1вых/I0вых)

0,5/0,5

Максимальн.частота переключения, МГц

до 150 МГц



Download 384.49 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   110




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling