Mavzu: Funksiya limiti. Cheksiz kichik va cheksiz katta funksiyalar, ularning xossalari. Funksiya limitinig xossalari. Birinchi va ikkinchi ajoyib limitlar. Cheksiz kichik miqdorni taqqoslash


Download 388 Kb.
bet1/2
Sana17.06.2023
Hajmi388 Kb.
#1520255
  1   2
Bog'liq
1. Funksiyaning limiti va uning asosiy xossalari. Aniqmasliklar



Mavzu: Funksiya limiti. Cheksiz kichik va cheksiz katta funksiyalar, ularning xossalari. Funksiya limitinig xossalari. Birinchi va ikkinchi ajoyib limitlar. Cheksiz kichik miqdorni taqqoslash.
Reja:

1.Kirish


2. Funksiyaning limiti va uning asosiy xossalari.
3. Aniqmasliklar va ularni ochish.

Kirish


Tayanch iboralar va tushunchalar
Funksiya limiti va uning xossalari, ketma-ketlik, cheksiz katta miqdor, chap va o’ng limitlar, cheksiz kichik funksiya, ko’paytmaning va bo’linmaning limiti, birinchi ajoyib limit, aniqmasliklarni ochish.


1. Funksiyaning limiti va uning asosiy xossalari
1. 1-ta’rif. funksiya nuqtaning biror atrofida aniqlangan bo’lib, istalgan son uchun shunday son mavjud bo’lsaki, tengsizlikni qanoatlantiradigan barcha nuqtalar uchun tengsizlik bajarilsa, chekli son funksiyaning nuqtadagi limiti deb ataladi va quyidagicha yoziladi
(1)
Funksiya limitining ta’rifidan kelib chiqadiki cheksiz kichik bo’lganda ham cheksiz kichik bo’ladi.
2-ta’rif. funksiya, ning yetarlicha katta qiymatlarida aniqlangan bo’lib, istalgan son uchun shunday, mavjud bo’lsaki, tengsizlikni qanoatlantiruvchi barcha lar uchun tengsizlik bajarilsa, o’zgarmas son, funksiyaning dagi limiti deyiladi, va
(2)
bilan belgilanadi.


Tayanch iboralar va tushunchalar
Funksiya limiti va uning xossalari, ketma-ketlik, cheksiz katta miqdor, chap va o’ng limitlar, cheksiz kichik funksiya, ko’paytmaning va bo’linmaning limiti, birinchi ajoyib limit, aniqmasliklarni ochish.


1. Funksiyaning limiti va uning asosiy xossalari
1. 1-ta’rif. funksiya nuqtaning biror atrofida aniqlangan bo’lib, istalgan son uchun shunday son mavjud bo’lsaki, tengsizlikni qanoatlantiradigan barcha nuqtalar uchun tengsizlik bajarilsa, chekli son funksiyaning nuqtadagi limiti deb ataladi va quyidagicha yoziladi
(1)
Funksiya limitining ta’rifidan kelib chiqadiki cheksiz kichik bo’lganda ham cheksiz kichik bo’ladi.
2-ta’rif. funksiya, ning yetarlicha katta qiymatlarida aniqlangan bo’lib, istalgan son uchun shunday, mavjud bo’lsaki, tengsizlikni qanoatlantiruvchi barcha lar uchun tengsizlik bajarilsa, o’zgarmas son, funksiyaning dagi limiti deyiladi, va
(2)
bilan belgilanadi.
1-ta’rifda faqat yoki bo’lgan qiymatlar qaralsa, funksiyaning chap yoki o’ng limit tushunchasi kelib chiqadi va
, (3)
bilan begilanadi.
3-ta’rif. Limiti bo’lgan funksiyaga cheksiz kichik funksiya (ch. kich. f.) deyiladi.
4-ta’rif. Limiti yoki bo’lgan funksiyalarga cheksiz katta funksiya (ch. kat. f.) deyiladi va
(4)
bilan belgilanadi.
Limitning ta’rifidan kelib chiqadiki o’zgarmas miqdorning limiti o’ziga teng.

Download 388 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling