Muhammad Al-Xorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti Mashinali o’qitish fanidan Mustaqil ish Guruh: 212-20 Topshirdi: Jamolova Baxtiniso Tekshirdi: Nurmurodov Javohir
Download 256.26 Kb.
|
- Bu sahifa navigatsiya:
- Topshirdi: Jamolova Baxtiniso Tekshirdi: Nurmurodov Javohir
- Output: [[76, 84], [175, 194]] 4.SoftMax aktivlash funksiyasi yordamida sinflashtirish import numpy as np import matplotlib.pyplot as plt
O’ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI Muhammad Al-Xorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti Mashinali o’qitish fanidan Mustaqil ish Guruh: 212-20 Topshirdi: Jamolova Baxtiniso Tekshirdi: Nurmurodov Javohir 1. Chiziqli regressiya yordamida baholash jarayonini bashoratlash y = wx from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) y = np.array([5, 20, 14, 32, 22, 38]) print(x) print(y) model = LinearRegression() model.fit(x, y) r_sq = model.score(x, y) print('Determinatsiya koefitsienti:', r_sq) print('Kesishma:', model.intercept_) print('Chizilgan oqim:', model.coef_) y_pred = model.predict(x) print('Taxmin qilingan javob:', y_pred, sep='\n') y_pred = model.intercept_ + model.coef_ * x print('Taxmin qilingan javob:', y_pred, sep='\n') x_new = np.arange(5).reshape((-1, 1)) print(x_new) y_new = model.predict(x_new) print(y_new) plt.scatter(x, y, color='red') plt.plot(x, y_pred, color='blue') plt.title('Chiziqli regressiya') plt.xlabel('x') plt.ylabel('y') plt.show() 2. Sigmoid aktivlash funksiyasi yordamida sinflash. import numpy as np import matplotlib.pyplot as plt def sig(x): return 1 / (1 + np.exp(-x)) x = np.linspace(-10, 10, 50) p = sig(x) plt.xlabel("x") plt.ylabel("Sigmoid(x)") plt.plot(x, p) plt.show() 3.Matritsani matritsaga ko’paytirish dasturi. def matrix_multiplication(A, B): # Determine the matrices' dimensions. rows_A = len(A) cols_A = len(A[0]) rows_B = len(B) cols_B = len(B[0]) # Natija matritsasini nolga o'rnating. result = [[0 for row in range(cols_B)] for col in range(rows_A)] # Iterate through rows of A for s in range(rows_A): # Iterate through columns of B for j in range(cols_B): # Iterate through rows of B for k in range(cols_A): result[s][j] += A[s][k] * B[k][j] return result; # Sample matrices A = [[1, 4, 3], [4, 9, 6]] B = [[7, 8], [9, 10], [11, 12]] # Perform matrix multiplication result = matrix_multiplication(A, B) # Print the result print(result) # Output: [[76, 84], [175, 194]] 4.SoftMax aktivlash funksiyasi yordamida sinflashtirish import numpy as np import matplotlib.pyplot as plt A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) C = np.matmul(A, B) fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1.matshow(A, cmap=plt.cm.Blues) for i in range(A.shape[0]): for j in range(A.shape[1]): c = A[j, i] ax1.text(i, j, str(c), va='center', ha='center') ax1.set_title('Matrix A') ax2.matshow(B, cmap=plt.cm.Blues) for i in range(B.shape[0]): for j in range(B.shape[1]): c = B[j, i] ax2.text(i, j, str(c), va='center', ha='center') ax2.set_title('Matrix B') ax3.matshow(C, cmap=plt.cm.Blues) for i in range(C.shape[0]): for j in range(C.shape[1]): c = C[j, i] ax3.text(i, j, str(c), va='center', ha='center') ax3.set_title('Matrix C') plt.show() Download 256.26 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling