Туннельный эффект. Гармонический осциллятор в квантовой механики План Туннельный эффект. Стационарные задачи квантовой механики


Download 0.59 Mb.
bet1/5
Sana11.03.2023
Hajmi0.59 Mb.
#1258645
  1   2   3   4   5
Bog'liq
Лекц 4 Стац З Кв мех Восстановлен


Туннельный эффект. Гармонический осциллятор в квантовой механики


План

  1. Туннельный эффект.

  2. Стационарные задачи квантовой механики.

  3. Частица в потенциальной яме с непроницаемыми стенками.

  4. Квантовый гармонический осциллятор.



ТУННЕЛЬНЫЙ ЭФФЕКТ (туннелирование) — квантовый переход системы через область движения, запрещённую классической механикой. Типичный пример такого процесса— прохождение частицы через потенциальный барьер, когда её энергия Е меньше высоты барьера. Импульс частицы р в этом случае, определяемый из соотношения , где U(x)— потенциальная. энергия частицы (т — масса), был бы в области внутри барьера, ЕОдна из постановок задач о прохождении потенциального барьера соответствует случаю, когда на барьер падает стационарный поток частиц и требуется найти величину прошедшего потока. Для таких задач вводится коэффициент прозрачности барьера (коэффициент туннельного перехода) D, равный отношению интенсивностей прошедшего и падающего потоков. Из обратимости по времени следует, что коэффициент прозрачности для переходов в «прямом» и обратном направлениях одинаковы. В одномерном случае коэффициент прозрачности может быть записан в виде
(1)

интегрирование проводится по классически недоступной области, х1,2 - точки поворота, определяемые из условия U(х1,2) = Е. В точках поворота в пределе классической механики импульс частицы обращается в нуль. Коэффициент. Do требует для своего определения точного решения квантово-механической. задачи.
При выполнении условия квазиклассичности


Download 0.59 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling