§. Natural va butun sonlar
Download 0.76 Mb.
|
§. Natural va butun sonlar
A) x– 2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2 49. ifodanisoddalashtiring.( xϵ(– 1; 1) ) A) x– 2B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2 50. ifodanisoddalashtiring. ( xϵ(1; 2) ) A) x– 2 B)(x2 + 4)/(x – 2)C) –(x+2) D) x+2 51. ifodanisoddalashtiring. ( xϵ(2; ∞) ) A) x– 2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2 52. ifodanisoddalashtiring. ( xϵ(– ∞; – 1) ) A)x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1) 53. ifodanisoddalashtiring. ( xϵ(– 1; 0) ) A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1) 54. ifodanisoddalashtiring. ( xϵ[0; 1) ) A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1) 55. ifodanisoddalashtiring. ( xϵ(1; ∞) ) A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1)D) x/(x + 1) 56. ifodanisoddalashtiring. ( xϵ(– ∞; 2) ) A) x2 – 4x–12 B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12 57. ifodanisoddalashtiring. ( xϵ(2; ∞) ) A) x2 – 4x–12B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12 58. ifodanisoddalashtiring. ( xϵ(–∞; 0) ) A)– 1/x B) 1/x C)x D)–x 59. ifodanisoddalashtiring.( xϵ(0; 1) ) A) – 1/x B) 1/x C)x D)– x 60. ifodanisoddalashtiring.( xϵ(1; 2) ) A)– 1/x B) 1/x C)x D)– x 61. ifodanisoddalashtiring. ( xϵ(2; 3) ) A)– 1/xB) 1/x C)x D)– x 62. ifodanisoddalashtiring.( xϵ(3; ∞) ) A)– 1/xB) 1/x C)x D)– x 63. ifodanisoddalashtiring.( xϵ( – ∞; – 3) ) A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3) 64. ifodanisoddalashtiring. ( xϵ(– 3; – 1) ) A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3) 65. ifodanisoddalashtiring. ( xϵ(–1; 2) ) A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3) 66. ifodanisoddalashtiring.( xϵ(2; ∞) ) A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3) 67. ifodanisoddalashtiring. ( xϵ(– ∞; 0) ) A) B) C) D) 68. ifodanisoddalashtiring.( xϵ(0; 1) ) A) B) C) D) 69. ifodanisoddalashtiring. ( xϵ[ 1; ∞) ) A) B)C) D) 70. ifodanisoddalashtiring.( xϵ(– ∞; 0) ) A) B) C) D) 71. ifodanisoddalashtiring.( xϵ[ 0; 1/3) ) A) B) C) D) 72. ifodanisoddalashtiring.( xϵ(1/3; 1) ) A) B) C) D) 73. ifodanisoddalashtiring. ( xϵ(1; ∞) ) A) B)C) D) 74. ifodanisoddalashtiring.( xϵ( – ∞; – 3/2) ) A) B) C) D) 75. ifodanisoddalashtiring.( xϵ(– 3/2; 0) ) A) B) C) D) 76. ifodanisoddalashtiring.( xϵ(0; 3) ) A) B) C) D) 77. ifodanisoddalashtiring.( xϵ(3; ∞) ) A) B)C) D) 78. |−abc| = −abc, |a−b| = −b + a va |−b| = b bo’lsa, quyidagilardan qaysi biri har doim o’rinli. A) b<0 B) 0 79. funksiyaning eng katta qiymatini toping A) 9 B) 12 C) 15 D) 24 Download 0.76 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling