0 name: Switch category to $module$/top/╨Я╨╛ ╤Г╨╝╨╛╨╗╤З╨░╨╜╨╕╤О ╨┤╨╗╤п joriy nazorat
Download 114.96 Kb.
|
ixtisoslik
- Bu sahifa navigatsiya:
- nbsp;\\( ( \\frac\{ \\sqrt[]\{3\} \}\{2\}; \\frac\{1\}\{2\} ) \\)nbsp;
- Nuqtalar o’rniganbsp; mosnbsp;\n so’zni tanlang.
11,70
= 1170 ~ 1160 ~ 1180 } 64608 name: ni ixchamlang. ::ni ixchamlang.::[html] \\( \\frac\{tg2x \\cdot tgx \}\{tg2x-tgx\} \\) ni \nixchamlang. { ~ tgx ~ sinx ~ cos2x = sin2x } 64605 name: nuqtani hosil qilish uchun (1;0) nuqtani O nuqta atrofida necha gradusga burish kerak? ::nuqtani hosil qilish uchun (1;0) nuqtani O nuqta atrofida necha gradusga burish kerak?::[html] \\( ( \\frac\{ \\sqrt[]\{3\} \}\{2\}; \\frac\{1\}\{2\} ) \\) nuqtani hosil qilish uchun (1;0) nuqtani O\nnuqta atrofida necha gradusga burish kerak? { = \\( \\frac\{ \\pi \}\{6\} \\) ~ -\\( \\frac\{ \\pi \}\{6\} \\) ~ \\( \\frac\{ \\pi \}\{3\} \\) ~ \\( 2 \\pi \\) } 64607 name: Sonlarni kamayish tartibida yozing: a=cos2; b=cos2^0; c=sin2^0; d=sin2 ::Sonlarni kamayish tartibida yozing\: a\=cos2; b\=cos2^0; c\=sin2^0; d\=sin2::[html] Sonlarni kamayish tartibida yozing\: a\=cos2; b\=cos20 ; c\=sin20 ; d\=sin2 { ~ a>c>d>b ~ d>c>b>a = b>c>d>a ~ c>d>b>a } 64606 name: tg╬▒=тИЪ5 boтАШlsa, sin2╬▒ ni toping. ::tg╬▒\=тИЪ5 boтАШlsa, sin2╬▒ ni toping.::[html] \\( tg \\alpha\= \\sqrt[]\{5\} \\) boтАШlsa,\\( sin2 \\alpha \\) ni toping. { ~ \\( \\frac\{ 3\\sqrt[]\{5\} \}\{5\} \\) ~ -\\( \\frac\{ \\sqrt[]\{5\} \}\{3\} \\) ~ \\( \\sqrt[]\{5\} \\) = \\( \\frac\{ \\sqrt[]\{5\} \}\{3\} \\) } 0 name: Switch category to $module$/top/╨Я╨╛ ╤Г╨╝╨╛╨╗╤З╨░╨╜╨╕╤О ╨┤╨╗╤П Joriy nazorat $CATEGORY: $module$/top/╨Я╨╛ ╤Г╨╝╨╛╨╗╤З╨░╨╜╨╕╤О ╨┤╨╗╤П Joriy nazorat 62094 name: . a тГЧ(2;4) va b тГЧ(-6;3) vektorlarga qurilgan parallellogrammning yuzasi necha kvadrat birlikka teng? ::. a тГЧ(2;4) va b тГЧ(-6;3) vektorlarga qurilgan parallellogrammning yuzasi necha kvadrat birlikka teng?::[html] \\( \\vec\{a\}(2;4) \\) va \\( \\vec\{b\}(-6;3) \\) \n \n vektorlarga qurilgan parallellogrammning\nyuzasi necha kvadrat birlikka teng? { ~ 20 = 30 ~ 25 ~ 32 } 62090 name: . a тГЧ=((1;7) ) тГЧ va b тГЧ=((4;4) ) тГЧ vektorlar berilgan. x ning qanday qiymatlarida (b тГЧ+xa тГЧ ) vektor b тГЧ vektorga perpendikulyar boтАШladi? ::. a тГЧ\=((1;7) ) тГЧ va b тГЧ\=((4;4) ) тГЧ vektorlar berilgan. x ning qanday qiymatlarida (b тГЧ+xa тГЧ ) vektor b тГЧ vektorga perpendikulyar boтАШladi?::[html] \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \n \\( \\vec\{a\}\=( \\vec\{1;7\} ) \\) va \\( \\vec\{b\}\=( \\vec\{4;4\} ) \\) \n \n vektorlar berilgan. x ning qanday qiymatlarida \\( ( \\vec\{b\}+x \\vec\{a\} ) \\)\n \n vektor \\( \\vec\{b\} \\)\n \n vektorga perpendikulyar boтАШladi? { ~ -2 ~ 2 = -1 ~ 1 } 62088 name: . a тГЧ=((1;8) ) тГЧ va b тГЧ=((4;4) ) тГЧ boтАШlsa, |a тГЧ+b тГЧ | ifodalarning qiymatlarini toping. ::. a тГЧ\=((1;8) ) тГЧ va b тГЧ\=((4;4) ) тГЧ boтАШlsa, |a тГЧ+b тГЧ | ifodalarning qiymatlarini toping.::[html] \\( \\vec\{a\}\=( \\vec\{1;8\} ) \\) va \\( \\vec\{b\}\=( \\vec\{4;4\} ) \\) \n \n boтАШlsa, \\( \\left| \\begin\{matrix\} \\vec\{a\}+ \\vec\{b\} \\end\{matrix\} \\right| \\) \n \n ifodalarning qiymatlarini toping. { ~ 10 = 13 ~ 12 ~ 15 } 62093 name: a тГЧ(k+3;7) vektorning uzunligi 25 ga teng boтАШlsa, k qabul qilishi mumkin boтАШlgan qiymatlarini yigтАШindisi nechaga teng? ::a тГЧ(k+3;7) vektorning uzunligi 25 ga teng boтАШlsa, k qabul qilishi mumkin boтАШlgan qiymatlarini yigтАШindisi nechaga teng?::[html] \\( \\vec\{a\}(k+3;7) \\) vektorning uzunligi 25 ga teng boтАШlsa, k \n \n qabul qilishi mumkin\nboтАШlgan qiymatlarini yigтАШindisi nechaga teng? { = -6 ~ 3 ~ 21 ~ 15 } 62067 name: Agar a тГЧ=((k+1;-2)) тГЧ va b тГЧ=((3;k+2)) тГЧ vektorlar oтАШzaro perpendikulyar boтАШlsa, k ni toping. ::Agar a тГЧ\=((k+1;-2)) тГЧ va b тГЧ\=((3;k+2)) тГЧ vektorlar oтАШzaro perpendikulyar boтАШlsa, k ni toping.::[html] Agar \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \n \\( \\vec\{a\}\= (\\vec\{k+1;-2\}) \\) va \\( \\vec\{b\}\=( \\vec\{3; k+2\} ) \\)\n \n vektorlar oтАШzaro perpendikulyar boтАШlsa, k ni toping. { = 1 ~ 2 ~ -1 ~ 0 } 62089 name: k ning qanday qiymatlarida a тГЧ=((k+1;-2)) тГЧ va b тГЧ=((k+2; 3)) тГЧ vektorlar oтАШzaro yoтАШnalishdosh boтАШladi? ::k ning qanday qiymatlarida a тГЧ\=((k+1;-2)) тГЧ va b тГЧ\=((k+2; 3)) тГЧ vektorlar oтАШzaro yoтАШnalishdosh boтАШladi?::[html] \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \nk ning qanday qiymatlarida \n \n \\( \\vec\{a\}\=( \\vec\{k+1;-2\} ) \\) va \\( \\vec\{b\}\=( \\vec\{k+2;3\} ) \\) \n \n vektorlar oтАШzaro yoтАШnalishdosh boтАШladi? { = -1,4 ~ 2 ~ 1,2 ~ 1,4 } 62092 name: m ning qanday qiymatida \( \vec{a}(m-1;-4) \) vektorninig uzunligi 5 dan oshmaydi? ::m ning qanday qiymatida \\( \\vec\{a\}(m-1;-4) \\) vektorninig uzunligi 5 dan oshmaydi?::[html] \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \nm ning qanday qiymatida \\( \\vec\{a\}(m-1;-4) \\) \n \n vektorninig \n\n uzunligi 5 dan oshmaydi? { ~ \\( -2< m <4 \\) ~ \\( -3 \\leq m \\leq3 \\) ~ \\( m \\leq 4 \\) = \\( -2 \\leq m \\leq4 \\) } 0 name: Switch category to $module$/top/По умолчанию для Joriy nazorat $CATEGORY: $module$/top/По умолчанию для Joriy nazorat 59550 name: f(x) funksiya x=x0 nuqtada uzluksiz deyiladi, agarda ... ::f(x) funksiya x\=x0 nuqtada uzluksiz deyiladi, agarda ...::[html] f(x) funksiya x\=x0 nuqtada uzluksiz deyiladi, agarda ... { = \\( \\lim_\{x \\rightarrow x_\{0\}\}f(x)\=f(x_\{0\}) \\) ~
~
~
}
59548 name: limitni hisoblang ::limitni hisoblang::[html] \\( \\lim_\{x \\rightarrow 0\}\\frac\{7x\}\{sin 7x\} \\) limitni hisoblang { = 1 ~
~
~
}
59549 name: limitni hisoblang ::limitni hisoblang::[html] \\( \\lim_\{x \\rightarrow 0\}\\frac\{2arcsinx\}\{5x\} \\) limitni hisoblang { = 2/5 ~
~
~
}
59553 name: Limitni hisoblang ::Limitni hisoblang::[html] Limitni hisoblang \\( \\lim_\{x \\rightarrow 1/2\}\\frac\{\{8x^3-1\}\}\{3x^2+5x+11\} \\) { = 0 ~
~
~
}
59554 name: Limitni hisoblang ::Limitni hisoblang::[html] Limitni hisoblang \\( \\lim_\{x \\rightarrow -2\}\\frac\{\{x^2-4\}\}\{x^2+3x+2\} \\) { = 4 ~
~
~
}
59556 name: Limitni hisoblang ::Limitni hisoblang::[html] Limitni hisoblang \\( \\lim_\{x \\rightarrow \\infty\} 2x(e^\{1/x\}-1) \\) { = 2 ~
~
~
}
59557 name: Limitni hisoblang ::Limitni hisoblang::[html] Limitni hisoblang \\( \\lim_\{x \\rightarrow -1\} \\frac\{3x^2+3x\}\{x^3+1\} \\) { = -1 ~
~
~
}
59551 name: Limitni hisoblang. ::Limitni hisoblang.::[html] Limitni hisoblang. \\( \\lim_\{x \\rightarrow +\\infty\}\\frac\{\\sqrt\{4x^2+1\}\}\{5x-1\} \\) { = 2/5 ~
~
~
}
59552 name: limitni hisoblang: ::limitni hisoblang\:::[html] Limitni hisoblang \\( \\lim_\{x \\rightarrow 1/2\}\\frac\{\{8x^3-1\}\}\{4x^2-1\} \\) { ~ \\( \\infty \\) =
~
~
}
59555 name: limitni hisoblang: ::limitni hisoblang\:::[html] Limitni hisoblang\: \\( \\lim_\{x \\rightarrow +\\infty\}(\\sqrt\{3x-7a\}-\\sqrt\{3x\}) \\) { = 0 ~
~
~
} 0 name: Switch category to $module$/top/По умолчанию для Joriy nazorat $CATEGORY: $module$/top/По умолчанию для Joriy nazorat 60044 name: Agar f(2x-1) = x3 -2x+6 bo'lsa f'(3)=? ::Agar f(2x-1) \= x3 -2x+6 bo'lsa f'(3)\=?::[html] Agar f(2x-1) \= x3 -2x+6 bo'lsa f'(3)\=? { = 5 ~
~
~
}
60043 name: Agar f(x)=2x3 -x+1 ::Agar f(x)\=2x3 -x+1::[html] Agar f(x)\=2x3 -x+1 bo'lsa \\( f'( \\sqrt[]\{2\} )\=? \\) { = 11 ~
~
~
}
60042 name: Agar f(x)=a3 bo'lsa \( f'(x)=? (a \in R ) \) ::Agar f(x)\=a3 bo'lsa \\( f'(x)\=? (a \\in R ) \\)::[html] Agar f(x)\=a3 bo'lsa \\( f'(x)\=? (a \\in R ) \\) { = 0 ~
~
~
}
60046 name: Agar f(x)=ex +e2x +e3x+......+e10x bo'lsa f'(0)=? ::Agar f(x)\=ex +e2x +e3x+......+e10x bo'lsa f'(0)\=?::[html] Agar f(x)\=ex +e2x +e3x+......+e10x bo'lsa f'(0)\=? { = 55 ~
~
~
}
60050 name: Agar f(x)=ln(lnx) bo'lsa f'(e)=? ::Agar f(x)\=ln(lnx) bo'lsa f'(e)\=?::[html] Agar f(x)\=ln(lnx) bo'lsa f'(e)\=? { = 1/e ~
~
~
}
60045 name: Agar f(x)=ln(x2 -x+1) bo'lsa f'(2)=? ::Agar f(x)\=ln(x2 -x+1) bo'lsa f'(2)\=?::[html] Agar f(x)\=ln(x2 -x+1) bo'lsa f'(2)\=? { = 1 ~
~
~
}
60049 name: Agar \( f(x)=(5x^2-7x+1)^5 \) bo'lsa f'(1)=? ::Agar \\( f(x)\=(5x^2-7x+1)^5 \\) bo'lsa f'(1)\=?::[html] Agar \\( f(x)\=(5x^2-7x+1)^5 \\) bo'lsa f'(1)\=? { = 15 ~
~
~
}
60048 name: Agar \( f(x)=x^2-8 \sqrt[]{x}+x \sqrt[]{x} \) bo'lsa f'(4)=? ::Agar \\( f(x)\=x^2-8 \\sqrt[]\{x\}+x \\sqrt[]\{x\} \\) bo'lsa f'(4)\=?::[html] Agar \\( f(x)\=x^2-8 \\sqrt[]\{x\}+x \\sqrt[]\{x\} \\) bo'lsa f'(4)\=? { = 9 ~
~
~
}
60041 name: Funksiya hosilasini toping ::Funksiya hosilasini toping::[html] Funksiya hosilasini toping \\( y\=x+\\sqrt\{x\}+\\sqrt[3]\{x\} \\) { = \\( 1+\\frac\{1\}\{2\\sqrt\{x\}\}+\\frac\{1\}\{3\\sqrt\{x^2\}\} (x>0) \\) ~
~
~
}
60047 name: \( f(x)=x+ \frac{1}{x}+ \frac{1}{x^2} \) funksiya uchun f'(-1) ni hisoblang? ::\\( f(x)\=x+ \\frac\{1\}\{x\}+ \\frac\{1\}\{x^2\} \\) funksiya uchun f'(-1) ni hisoblang?::[html] \\( f(x)\=x+ \\frac\{1\}\{x\}+ \\frac\{1\}\{x^2\} \\) funksiya uchun f'(-1) ni hisoblang? { = 2 ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Joriy nazorat $CATEGORY: $module$/top/По умолчанию для Joriy nazorat 60054 name: y=2sinx+cos2x funksiya y''=? ::y\=2sinx+cos2x funksiya y''\=?::[html] y\=2sinx+cos2x funksiya y''\=? { = -2sinx-4cos2x ~
~
~
}
60057 name: y=arcctgx y(n) =? ::y\=arcctgx y(n) \=?::[html] y\=arcctgx y(n) \=? { = \\( (cosy)^nsin( \\frac\{n \\pi \}\{2\}+ny ) \\) ~
~
~
}
60052 name: y=ax \( (a>0, a \neq 1 ) \) bo'lsin \( y^{(n)}=? \) ::y\=ax \\( (a>0, a \\neq 1 ) \\) bo'lsin \\( y^\{(n)\}\=? \\)::[html] y\=ax \\( (a>0, a \\neq 1 ) \\) bo'lsin \\( y^\{(n)\}\=? \\) { = ax lna ~
~
~
}
60053 name: y=sinx bo'lsin \( y^{(n)}=? \) ::y\=sinx bo'lsin \\( y^\{(n)\}\=? \\)::[html] y\=sinx bo'lsin \\( y^\{(n)\}\=? \\) { = \\( sin(x+ \\frac\{ \\pi \}\{2\} ) \\) ~
~
~
}
60056 name: y=xm y(n) =? ::y\=xm y(n) \=?::[html] y\=xm y(n) \=? { = \\( m(m-1)(m-2)...(m-(n-1)) x^\{(m-n)\} \\) ~
~
~
}
60055 name: \( y=sinx+x^3 \) y=f(x) ning 2-tartibla hosilasi ::\\( y\=sinx+x^3 \\) y\=f(x) ning 2-tartibla hosilasi::[html] \\( y\=sinx+x^3 \\) y\=f(x) ning 2-tartibla hosilasi { = -sinx+6x ~
~
~
}
60051 name: \( y=x^ \mu \) (x>0) bo'lsin. y'''=? ::\\( y\=x^ \\mu \\) (x>0) bo'lsin. y'''\=?::[html] \\( y\=x^ \\mu \\) (x>0) bo'lsin. y'''\=? { = \\( \\mu( \\mu-1 )( \\mu-2 )x^\{ \\mu-3 \} \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Boshlang‘ich funksiya va aniqmas integral. $CATEGORY: $module$/top/По умолчанию для Boshlang‘ich funksiya va aniqmas integral. 62899 name: Hisoblang ::Hisoblang::[html] Hisoblang \\( f(x)\=- \\frac\{x\}\{ \\sqrt[]\{1-x^2\} \} \\) { ~ ln(kx+b) +C ~
~ \\( \\frac\{x^3\}\{3\}+C \\) =
}
62896 name: Kasrni integrallang ::Kasrni integrallang::[html] Kasrni integrallang \\( \\int \\frac\{dx\}\{x^2+6x+10\} \\) { = \\( arctg(x+3)+C \\) ~
~
~
}
62895 name: quyidagi integralini toping ::quyidagi integralini toping::[html] \\( \\int xdx \\) quyidagi integralini toping { = \\( \\frac\{x^2\}\{2\} \\) ~
~ 2x ~ 0 }
62900 name: Quyidagi integralini toping ::Quyidagi integralini toping::[html] Quyidagi\nintegralini toping \\( \\int \\frac\{1\}\{1+x^2\}dx \\) { = \\( arctgx+C \\) ~
~
62901 name: Quyidagi integralini toping ::Quyidagi integralini toping::[html] Quyidagi\nintegralini toping \\( \\int a^xdx \\) { = \\( \\frac\{a^x\}\{ln a\}+C \\) ~
~
~
} 62902 name: Quyidagi integralini toping ::Quyidagi integralini toping::[html] Quyidagi\nintegralini toping \\( \\int \\frac\{1\}\{sin^2x\}dx \\) { = \\( -ctgx+C \\) ~
~
~
} 62903 name: Quyidagi integralini toping ::Quyidagi integralini toping::[html] Quyidagi integralini toping \\( \\int 1\\cdot dx \\) { =\\( x+c \\) ~ \\( x^2+c \\) ~
~
}
62904 name: Quyidagi integralini toping ::Quyidagi integralini toping::[html] Quyidagi\nintegralini toping \\( \\int2^x dx \\) { = \\( \\frac\{2^x\}\{ln2\} \\) ~
~
~
} 62898 name: Ushbu funksiyaning boshlang’ichini toping. ::Ushbu funksiyaning boshlang’ichini toping.::[html] Ushbu funksiyaning \nboshlang’ichini toping. \\( \\frac\{1\}\{x\} , x>0 \\) { = lnx+c ~ sin(kx+b)+c ~ ln(kx+b) +C ~
} 62897 name: Ushbu funksiyaning boshlang’ichini toping. sin(kx+b), ::Ushbu funksiyaning boshlang’ichini toping. sin(kx+b),::[html] Ushbu funksiyaning \nboshlang’ichini toping. sin(kx+b),\n { = cos(kx+b) ~ sin(kx+b) ~
~
0 name: Switch category to $module$/top/По умолчанию для Ratsional funksiyalarni integrallash. $CATEGORY: $module$/top/По умолчанию для Ratsional funksiyalarni integrallash. 63276 name: Hisoblang ::Hisoblang::[html] Hisoblang \\( \\int sin^3xdx \\) { = \\( \\frac\{1\}\{3\}cos^3x-cosx+C \\) ~
~
~
}
63277 name: Hisoblang ::Hisoblang::[html] Hisoblang \\( \\int cos^2xdx \\) { = \\( \\frac\{x\}\{2\}+ \\frac\{sin2x\}\{4\}+C \\) ~
~
~
}
63278 name: Hisoblang ::Hisoblang::[html] Hisoblang \\( \\int \\frac\{cosxdx\}\{sin^3x\} \\) { = \\( - \\frac\{1\}\{2sin^2x\}+C \\) ~
~
~
}
63279 name: Hisoblang ::Hisoblang::[html] \\( \\int \\frac\{dx\}\{\\sqrt\{x\}-\\sqrt[3]\{x\}\} \\) { = \\( 2 \\sqrt[]\{x\}+3 \\sqrt[3]\{x\}+6ln( \\sqrt[6]\{x\}-1)+6 \\sqrt[6]\{x\} +C \\) ~
~
~
}
63280 name: Hisoblang ::Hisoblang::[html] \\( \\int \\frac\{(1-x)dx\}\{\\sqrt[3]\{x^2\}\} \\) { = \\( \\frac\{3\}\{4\}(4-x) \\sqrt[3]\{x\}+C \\) ~
~
~
}
63274 name: Ratsional kasrni integrallang ::Ratsional kasrni integrallang::[html] Ratsional kasrni integrallang \\( \\int\\frac\{dx\}\{x^2+4x+7\} \\) { = \\( \\int \\frac\{1\}\{\\sqrt\{3\}\}arctg\\frac\{x+2\}\{\\sqrt\{3\}\}+C \\) ~
~
~
}
63275 name: Ratsional kasrni integrallang ::Ratsional kasrni integrallang::[html] Ratsional kasrni integrallang \\( \\int\\frac\{dx\}\{x^2+2x+2\} \\) { = \\( arctg(x+1)+C \\) ~
~
~
}
62905 name: Ratsional kasrni integrallang ::Ratsional kasrni integrallang::[html] Ratsional kasrni integrallang \\( \\int \\frac\{dx\}\{x^2+6x+10\} \\) { = \\( arctg(x+3)+C \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Trigonometrik funksiyalarni integrallash. $CATEGORY: $module$/top/По умолчанию для Trigonometrik funksiyalarni integrallash. 65255 name: Integrallang ::Integrallang::[html] Integrallang \\( \\frac\{cosxdx\}\{sin^3x\} \\) { = \\( - \\frac\{1\}\{2sin^2x\} +C \\) ~
~
~
}
65256 name: Integrallang ::Integrallang::[html] Integrallang \\( \\int_\{\}^\{\}\{tg^2xdx\} \\) { = tgx-x+C ~
~
~
}
65257 name: Integrallang ::Integrallang::[html] Integrallang \\( \\int_\{\}^\{\}\{sin^4x cosxdx\} \\) { = \\( \\frac\{1\}\{5\}sin^5x+C \\) ~
~
~
}
65250 name: Kасрни интегралланг ::Kасрни интегралланг::[html] Kасрни интегралланг \\( \\int_\{\}^\{\}\{cos \\frac\{4\}\{3\}xcos3xdx \} \\) { = \\( \\frac\{3\}\{26\} sin \\frac\{13\}\{3\}x+ \\frac\{3\}\{10\}sin \\frac\{5\}\{3\}x+C \\) ~
~
~
}
65251 name: Kасрни интегралланг ::Kасрни интегралланг::[html] Kасрни интегралланг \\( \\int_\{\}^\{\}\{sin3x\} \\cdot sin4xdx \\) { = \\( \\frac\{1\}\{2\}sinx- \\frac\{1\}\{14\}sin7x+C \\) ~
~
~
}
65252 name: Kасрни интегралланг ::Kасрни интегралланг::[html] Kасрни интегралланг \\( \\int_\{\}^\{\}\{sin^3x \\cdot cos^3x dx \} \\) { = \\( \\frac\{1\}\{4\}sin^4x- \\frac\{1\}\{6\}sin^6x+C \\) ~
~
~
}
65253 name: Kасрни интегралланг ::Kасрни интегралланг::[html] Kасрни интегралланг \\( \\int_\{\}^\{b\}\{sin^3xdx\} \\) { = \\( \\frac\{1\}\{3\}cos^3x-cosx+C \\) ~
~
~
}
65254 name: Интегралланг ::Интегралланг::[html] Интегралланг \\( \\int_\{\}^\{\}\{cos^2xdx\} \\) { = \\( \\frac\{x\}\{2\}+ \\frac\{sin2x\}\{4\} +C \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Xosmas integral tushunchasi. Integrallash sohasi chegaralanmagan xosmas integral. $CATEGORY: $module$/top/По умолчанию для Xosmas integral tushunchasi. Integrallash sohasi chegaralanmagan xosmas integral. 66197 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{0\}^\{+ \\infty\} e^\{-x\}dx \\) { = 1 ~
~
~
}
66198 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{a\}^\{+ \\infty\}\\frac\{dx\}\{x^a\} \\) (a>0, \\( \\alpha \\)>0) { = \\( \\frac\{a^\{1- \\alpha \}\}\{ \\alpha-1 \} \\) ~
~
~
}
66199 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{0\}^\{+ \\infty\} cosxdx \\) { = Mavjud emas ~
~
~
}
66200 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{0\}^\{+ \\infty\}\\frac\{xlnx\}\{(1+x^2)^3\}dx \\) { = -1/8 ~
~
~
}
66201 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{a\}^\{- \\infty\}\\frac\{dx\}\{x^2\} \\) (a>0) { = \\( \\frac\{1\}\{a\} \\) ~
~
~
}
66202 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{-\\infty\}^\{+ \\infty\}\\frac\{dx\}\{1+x^2\} \\) { = \\( \\pi \\) ~
~
~
}
66203 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{-1\}^\{1\}\\frac\{dx\}\{\\sqrt\{1-x^2\}\} \\) { = \\( \\pi \\) ~
~
~
}
66204 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{2\}^\{+ \\infty\}\{ \\frac\{dx\}\{x^2+x-2\} \} \\) { = \\( \\frac\{2\}\{3\}ln2 \\) ~
~
~
}
66205 name: Hisoblang ::Hisoblang::[html] \\( \\int_\{0\}^\{+\\infty\}\\frac\{dx\}\{1+x^3\} \\) { = \\( \\frac\{2 \\pi \}\{3 \\sqrt[]\{3\} \} \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Yuza tushunchasi. Kvadratlanuvchi soha. $CATEGORY: $module$/top/По умолчанию для Yuza tushunchasi. Kvadratlanuvchi soha. 66242 name: 4y=8x-x2 va 4y=x+6 chiziqlar bilan chegaralangan shaklning yuzini toping ::4y\=8x-x2 va 4y\=x+6 chiziqlar bilan chegaralangan shaklning yuzini toping::[html] 4y\=8x-x2 va 4y\=x+6 chiziqlar bilan chegaralangan shaklning yuzini toping { = \\( 5\\frac\{5\}\{24\} \\) ~
~
~
}
66248 name: Tekislikda ushbu \( \frac{x^2}{a^2}+ \frac{y^2}{b^2}=1 \) ellips bilan chegaralangan Q shaklning yuzi topilsin. ::Tekislikda ushbu \\( \\frac\{x^2\}\{a^2\}+ \\frac\{y^2\}\{b^2\}\=1 \\) ellips bilan chegaralangan Q shaklning yuzi topilsin.::[html] Tekislikda ushbu \\( \\frac\{x^2\}\{a^2\}+ \\frac\{y^2\}\{b^2\}\=1 \\) ellips bilan chegaralangan Q shaklning yuzi topilsin. { = \\( ab \\pi \\) ~
~
~
}
66243 name: \( (y-x)^2=x^3 \) , x=1 chiziqlar bilan chegaralangan shaklning yuzini toping ::\\( (y-x)^2\=x^3 \\) , x\=1 chiziqlar bilan chegaralangan shaklning yuzini toping::[html] \\( (y-x)^2\=x^3 \\) , x\=1 chiziqlar bilan chegaralangan shaklning yuzini toping { = \\( \\frac\{4\}\{5\} \\) ~
~
~
}
66246 name: \( f(x)= \frac{a}{2}(e^{ \frac{x}{a} }+e^{- \frac{x}{a} }) \), \( 0 \leq x \leq a \), a>0 zanjir chiziqni Ox o'q atrofida aylantirishdan xosil bo'lgan aylanish sirtining yuzini toping. ::\\( f(x)\= \\frac\{a\}\{2\}(e^\{ \\frac\{x\}\{a\} \}+e^\{- \\frac\{x\}\{a\} \}) \\), \\( 0 \\leq x \\leq a \\), a>0 zanjir chiziqni Ox o'q atrofida aylantirishdan xosil bo'lgan aylanish sirtining yuzini toping.::[html] \\( f(x)\= \\frac\{a\}\{2\}(e^\{ \\frac\{x\}\{a\} \}+e^\{- \\frac\{x\}\{a\} \}) \\), \\( 0 \\leq x \\leq a \\), a>0 zanjir chiziqni Ox o'q atrofida aylantirishdan xosil bo'lgan aylanish sirtining yuzini toping. { = \\( \\frac\{ \\pi a^2 \}\{4\}(e^2-e^\{-2\}+4) \\) ~
~
~
}
66247 name: \( x^2+(y-2)^2=1 \) aylanani Ox o'q atrofida aylantirishdan hosil bo'lgan aylanish sirtining (tor) yuzini toping. ::\\( x^2+(y-2)^2\=1 \\) aylanani Ox o'q atrofida aylantirishdan hosil bo'lgan aylanish sirtining (tor) yuzini toping.::[html] \\( x^2+(y-2)^2\=1 \\) aylanani Ox o'q atrofida aylantirishdan hosil bo'lgan aylanish sirtining (tor) yuzini toping. { = \\( 8 \\pi^2 \\) ~
~
~
}
66249 name: \( \rho= \rho( \ominus )=a(1-cos \ominus ) (a \in R, 0 \leq \ominus \leq 2 \pi ) \) ::\\( \\rho\= \\rho( \\ominus )\=a(1-cos \\ominus ) (a \\in R, 0 \\leq \\ominus \\leq 2 \\pi ) \\)::[html] \\( \\rho\= \\rho( \\ominus )\=a(1-cos \\ominus ) (a \\in R, 0 \\leq \\ominus \\leq 2 \\pi ) \\) { = \\( \\frac\{3\}\{2\} \\pi a^2 \\) ~
~
~
}
66244 name: \( {x=asin^3t \brace y=bcos^3t} \) (\( 0 \leq t \leq2 \pi \)) chiziq bilan chegaralangan shaklning yuzini toping ::\\( \{x\=asin^3t \\brace y\=bcos^3t\} \\) (\\( 0 \\leq t \\leq2 \\pi \\)) chiziq bilan chegaralangan shaklning yuzini toping::[html] \\( \{x\=asin^3t \\brace y\=bcos^3t\} \\) (\\( 0 \\leq t \\leq2 \\pi \\)) chiziq bilan chegaralangan shaklning yuzini toping { = \\( \\frac\{3ab \\pi \}\{8\} \\) ~
~
~
}
66245 name: \rho=\frac{3acos\varphi sin\varphi}{sin^3\varphi+cos^3\varphi} ::\\rho\=\\frac\{3acos\\varphi sin\\varphi\}\{sin^3\\varphi+cos^3\\varphi\}::[html] \\( \\rho\=\\frac\{3acos\\varphi sin\\varphi\}\{sin^3\\varphi+cos^3\\varphi\} \\) Chiziq bilan chegaralangan shaklning yuzini toping { = \\( \\frac\{3a^2\}\{2\} \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Aylanma sirt yuzasining ta’rifi va uning aniq integral yordamida ifodalanishi. $CATEGORY: $module$/top/По умолчанию для Aylanma sirt yuzasining ta’rifi va uning aniq integral yordamida ifodalanishi. 68205 name: aylanishidan hosil bo`lgan sirt yuzalarini toping ::aylanishidan hosil bo`lgan sirt yuzalarini toping::[html] \\( y\=acos \\frac\{ \\pi x \}\{2b\}( \\left| \\begin\{matrix\} x \\end\{matrix\} \\right| ) \\) OX o'qi atrofida aylanishidan hosil bo`lgan sirt\nyuzalarini toping { = \\( 2a \\sqrt[]\{ \\pi^2a^2+4b^2 \} + \\frac\{8b^2\}\{ \\pi \}ln( \\frac\{ \\pi a \}\{2b\}+ \\frac\{ \\sqrt[]\{ \\pi^2a^2+4b^2 \} \}\{2b\} ) \\) ~
~
~
}
68206 name: Ushbu x=a(t-sint), y=a(1-cost) \( (0 \leq t \leq 2 \pi ) \) OX o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping ::Ushbu x\=a(t-sint), y\=a(1-cost) \\( (0 \\leq t \\leq 2 \\pi ) \\) OX o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping::[html] Ushbu x\=a(t-sint), y\=a(1-cost) \\( (0 \\leq t \\leq 2 \\pi ) \\) OX o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping { = \\( \\frac\{64\}\{3\} \\pi a^2 \\) ~
~
~
}
68209 name: Ushbu \( y=tg x(0 \leq x \leq \frac{ \pi }{4} ) \) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping. ::Ushbu \\( y\=tg x(0 \\leq x \\leq \\frac\{ \\pi \}\{4\} ) \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping.::[html] Ushbu \\( y\=tg x(0 \\leq x \\leq \\frac\{ \\pi \}\{4\} ) \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping. { = \\( \\pi [( \\sqrt[]\{5\}- \\sqrt[]\{2\} )+ln \\frac\{( \\sqrt[]\{2\}+1)( \\sqrt[]\{5\}-1 )\}\{2\} ] \\) ~
~
~
}
68207 name: \( x^{2/3}+y^{2/3}=a^{2/3} \) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping ::\\( x^\{2/3\}+y^\{2/3\}\=a^\{2/3\} \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping::[html] \\( x^\{2/3\}+y^\{2/3\}\=a^\{2/3\} \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping { = \\( \\frac\{12\}\{5\} \\pi a^2 \\) ~
~
~
}
68208 name: \( \frac{x^2}{a^2}+ \frac{y^2}{b^2}=1 \) \( (0< b \leq a ) \) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping ::\\( \\frac\{x^2\}\{a^2\}+ \\frac\{y^2\}\{b^2\}\=1 \\) \\( (0< b \\leq a ) \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping::[html] \\( \\frac\{x^2\}\{a^2\}+ \\frac\{y^2\}\{b^2\}\=1 \\) \\( (0< b \\leq a ) \\) Ox o'qi atrofida aylanishidan hosil bo'lgan sirt yuzlarini toping { = \\( 2 \\pi b^2+2 \\pi ab \\frac\{arcsin8\}\{8\} \\) ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Aniq integralning fizikaga tadbiqlari. $CATEGORY: $module$/top/По умолчанию для Aniq integralning fizikaga tadbiqlari. 70343 name: . Ushbu formula bilan berilgan sohaning og’irlik markazining koordinatalarini toping. ::. Ushbu formula bilan berilgan sohaning og’irlik markazining koordinatalarini toping.::[html] Ushbu formula \\( \\frac\{x^2\}\{a^2\}+ \\frac\{y^2\}\{b^2\} \\leq 1 \\) bilan berilgan sohaning og’irlik markazining\nkoordinatalarini toping. \\( (0 \\leq x \\leq a , 0 \\leq y \\leq b ) \\) { = \\( ( \\frac\{4a\}\{3 \\pi \}; \\frac\{4b\}\{3 \\pi \} ) \\) ~
~
~
}
70344 name: Agar 1 кгс kuch elastik prujinani 1 sm ga cho'zsa, bu prujinani 10 sm ga cho'zish uchun qancha ish qilish kerak? ::Agar 1 кгс kuch elastik prujinani 1 sm ga cho'zsa, bu prujinani 10 sm ga cho'zish uchun qancha ish qilish kerak?::[html] Agar 1 кг/с kuch elastik prujinani 1 sm ga cho'zsa, bu prujinani 10 sm ga cho'zish uchun qancha ish qilish kerak? { = 0,5 ~
~
~
}
70342 name: Asosi b ga balandligi h ga teng bo’lgan uchburchakli plastinkaning statik va inersiya momentini toping ::Asosi b ga balandligi h ga teng bo’lgan uchburchakli plastinkaning statik va inersiya momentini toping::[html] Asosi b ga balandligi \nh ga teng \nbo’lgan uchburchakli plastinkaning \\( \\rho\=1 \\) statik\nva inersiya momentini toping { = \\( \\frac\{bh^2\}\{6\} \\);\\( \\frac\{bh^3\}\{12\} \\) ~
~
~
}
70345 name: Nuqtaning tezligi qonuniyat bilan o’zgarsa u vaqt oralig'ida qanday yo'lni bosib o'tadi? ::Nuqtaning tezligi qonuniyat bilan o’zgarsa u vaqt oralig'ida qanday yo'lni bosib o'tadi?::[html] Nuqtaning tezligi \\( v\=v_0+at \\)qonuniyat bilan o’zgarsa u \\( [0,T] \\)vaqt oralig'ida qanday yo'lni bosib o'tadi? { = \\( v_0T+ \\frac\{a\}\{2\}T^2 \\) ~\\( \\frac\{4\}\{15\} \\pi \\delta \\omega^2R^3 \\) ~ \\( mg \\frac\{Rh\}\{R+h\} \\) ~
}
70341 name: Uzunligi l= 10 m bo'lgan, tayoqning chiziqli zichligi qonunga muvofiq o'zgarsa novda massasini aniqlang.Bu erda x – novda bir uchidan 2-uchigacha masofa ::Uzunligi l\= 10 m bo'lgan, tayoqning chiziqli zichligi qonunga muvofiq o'zgarsa novda massasini aniqlang.Bu erda x – novda bir uchidan 2-uchigacha masofa::[html] Uzunligi l\= 10 m\nbo'lgan, tayoqning chiziqli\nzichligi \\( \\delta \=6+0.3x \\) кг/м qonunga muvofiq\no'zgarsa novda massasini aniqlang.Bu\nerda x – novda bir uchidan\n2-uchigacha masofa { = 75 ~
~
~
}
0 name: Switch category to $module$/top/По умолчанию для Sonli qator tushunchasi, yaqinlashuvchi qator va uning yig'indisi. $CATEGORY: $module$/top/По умолчанию для Sonli qator tushunchasi, yaqinlashuvchi qator va uning yig'indisi. 70346 name: 1+2+3+......+n+.... qator haqida nima deyish mumkin? ::1+2+3+......+n+.... qator haqida nima deyish mumkin?::[html] 1+2+3+......+n+.... qator haqida nima deyish mumkin? { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Funksional\nqator } 70348 name: qator haqida nima deyish mumkin? ::qator haqida nima deyish mumkin?::[html] \\( \\sum_\{m\=1\} ^\{\\infty\} aq^\{n-1\}, \\mid q\\mid>1 \\) qator haqida nima \ndeyish mumkin? { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 70347 name: Ushbu qator haqida nima deyish mumkin? ::Ushbu qator haqida nima deyish mumkin?::[html] Ushbu \\( \\sum_\{m\=1\}^ \\infty (-1)^\{n+1\} \\) qator haqida \nnima deyish mumkin? { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 70349 name: Ushbu , qator haqida nima deyish mumkin? ::Ushbu , qator haqida nima deyish mumkin?::[html] Ushbu \\( \\sum_\{n\=1\}^\{ \\infty \} \\frac\{1\}\{ \\sqrt[]\{n\}\}\\)\\(\\mid q \\mid>1 \\) qator haqida nima \ndeyish mumkin? { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 70350 name: Ushbu qator haqida nima deyish mumkin? ::Ushbu qator haqida nima deyish mumkin?::[html] Ushbu qator haqida nima \ndeyish mumkin? \\( \\sum_\{n\=1\}^ \\infty \\frac\{sin n\}\{2^n\} \\) { = Yaqinlashuvchi ~ Musbat qator ~ Funksional qator ~ Uzoqlashuvchi } 0 name: Switch category to $module$/top/По умолчанию для Taqqoslash teoremalari. Koshi va Dalamber alomatlari. $CATEGORY: $module$/top/По умолчанию для Taqqoslash teoremalari. Koshi va Dalamber alomatlari. 72506 name: qator haqida nima deyish mumkin? ::qator haqida nima deyish mumkin?::[html] \\( \\sum_\{n\=2\}^\\infty \\frac\{ln^3 n\}\{n^2\} \\) { = Yaqinlashuvchi ~ Uzoqlashuvchi ~ Musbat qator ~ Ishorasi almashinuvchi \nqator } 72507 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( \\sum_\{n\=3\}^\\infty \\frac\{1\}\{(ln)^\{lnln n\}\} \\) { = Yaqinlashuvchi ~ Uzoqlashuvchi ~ Musbat qator ~ Funksional qator } 72508 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( \\sum_\{n\=3\}^\\infty (\\frac\{n+1\}\{n+2\})^\{n^\{2\}\} \\) { = Yaqinlashuvchi ~ Uzoqlashuvchi ~ Musbat\nqator ~ Funksional\nqator } 72509 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( \\sum_\{n\=1\}^\\infty \\frac\{n!\}\{n^n\} \\) { = Yaqinlashuvchi ~ Musbat qator ~ Funksional qator ~ Uzoqlashuvchi } 72510 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( 1 \\frac\{1\}\{2\} -\\frac\{1\}\{3\} + \\frac\{1\}\{4\}+ \\frac\{1\}\{5\} - \\frac\{1\}\{6\}+.... \\) { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Ishorasi almashinuvchi \nqator } 0 name: Switch category to $module$/top/По умолчанию для Ishora navbatlashuvchi qatorlar. Leybnits teoremasi. $CATEGORY: $module$/top/По умолчанию для Ishora navbatlashuvchi qatorlar. Leybnits teoremasi. 72514 name: Ushbu qator qanday qator? ::Ushbu qator qanday qator?::[html] \\( 1- \\frac\{1\}\{2\}+ \\frac\{1\}\{3\}- \\frac\{1\}\{4\}+...+(-1)^\{n-1\} \\frac\{1\}\{n\}+ \\) { = Ishoralari almashinuvchi \n ~ Absolyut Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 72511 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( 1+ \\frac\{1\}\{2\} - \\frac\{1\}\{3\}+ \\frac\{1\}\{4\}+ \\frac\{1\}\{5\}- \\frac\{1\}\{6\}+.... \\) { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Ishorasi almashinuvchi \nqator } 72512 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( \\sum_\{n\=1\}^\\infty \\frac\{1\}\{ \\sqrt[]\{n(n+1)\} \} \\) { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Ishorasi almashinuvchi \nqator } 72513 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( 1- \\frac\{1\}\{2\}+ \\frac\{1\}\{3\}- \\frac\{1\}\{4\}+...+(-1)^\{n-1\} \\frac\{1\}\{n\}+ \\) { = Yaqinlashuvchi ~ Musbat qator ~ Funksional qator ~ Uzoqlashuvchi } 72515 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( 1+ \\frac\{1\}\{2\}+ \\frac\{1\}\{3\}+ \\frac\{1\}\{4\}+...+ \\frac\{1\}\{n\}+ \\) { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 0 name: Switch category to $module$/top/По умолчанию для Absolyut va shartli yaqinlashuvchi qatorlar. $CATEGORY: $module$/top/По умолчанию для Absolyut va shartli yaqinlashuvchi qatorlar. 72516 name: qator haqida nima deyish mumkin? ::qator haqida nima deyish mumkin?::[html] \\( \\sum_\{n\=1\}^\\infty (-1)^\{n+1\}\=1-1+1-1+..... \\) qator haqida \nnima deyish mumkin? { = Uzoqlashuvchi ~ Yaqinlashuvchi ~ Musbat qator ~ Ishorasi almashinuvchi \nqator } 72517 name: Ushbu qator yig’indisini toping ::Ushbu qator yig’indisini toping::[html] \\( \\sum_\{n\=1\}^\\infty \\frac\{3\}\{9n^2-3n-2\} \\) { = 1 ~
~
~
}
72518 name: Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi? ::Ushbu qatorni yaqinlahuvchilikka tekshirsak nima bo’ladi?::[html] \\( \\sum_\{n\=2\}^\\infty \\frac\{1\}\{(n+5)ln^2 (n+1)\} \\) { = Yaqinlashuvchi ~ Musbat qator ~ Funksional qator } 72519 name: Ushbu qatorning yig’indisini toping? ::Ushbu qatorning yig’indisini toping?::[html] \\( \\lim_\{n \\rightarrow \\infty\} \\frac\{(2n-1)!!\}\{n^n\} \\) { = Yaqinlashuvchi ~ Musbat qator ~ Uzoqlashuvchi ~ Ishorasi almashinuvchi \nqator } 0 name: Switch category to $module$/top/По умолчанию для Funksional ketma-ketlik tushunchasi. Yaqinlashuvchi ketma-ketlik, uning limiti. $CATEGORY: $module$/top/По умолчанию для Funksional ketma-ketlik tushunchasi. Yaqinlashuvchi ketma-ketlik, uning limiti. 73130 name: funksional qator haqida nima deyish mumkin? ::funksional qator haqida nima deyish mumkin?::[html] \\sum_\{k\=1\}^\\infty (x^\{\\frac\{1\}\{2n+1\}\}-x^\{\\frac\{1\}\{2n-1\}\}) \\( 0 \\leq x \\leq 1 \\) funksional\nqator haqida nima deyish mumkin? { = Tekis Yaqinlashmaydi ~ Musbat qator ~ Uzoqlashuvchi ~ Ishorasi almashinuvchi \nqator } 73128 name: Nuqtalar o’rniga mos so’zni tanlang. Agar funksional qatorning qismiy yig`indilaridan tuzilgan Snxfunksional ketma-ketlik M to`plamda qatorning yig`indisi Sxga tekis yaqinlashsa, unda funksional qator M to`plamda ……..deyiladi qator haqida nim ::Nuqtalar o’rniga mos so’zni tanlang. Agar funksional qatorning qismiy yig`indilaridan tuzilgan Snxfunksional ketma-ketlik M to`plamda qatorning yig`indisi Sxga tekis yaqinlashsa, unda funksional qator M to`plamda ……..deyiladi qator haqida nim::[html]
Agar funksional\nqatorning qismiy yig`indilaridan tuzilgan \n\{Sn(x)\} funksional ketma-ketlik M to`plamda qatorning\nyig`indisi S(x) ga tekis yaqinlashsa, unda funksional qator M to`plamda ……..deyiladi \n\n { = Download 114.96 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling