1-§. Butun sonlarning bo’linishi 2-§. Eng katta umumiy bo’luvchi va eng kichik umumiy bo’linuvchi 3-§. Tub va murakkab sonlar


Download 0.73 Mb.
bet1/15
Sana15.03.2023
Hajmi0.73 Mb.
#1269669
  1   2   3   4   5   6   7   8   9   ...   15
Bog'liq
BUTUN SONLAR HALQASIDA


VII BOB

BUTUN SONLAR HALQASIDA
BO’LINISH NAZARIYASI

1-§. Butun sonlarning bo’linishi
2-§. Eng katta umumiy bo’luvchi va eng kichik umumiy
bo’linuvchi
3-§. Tub va murakkab sonlar
4-§. Chekli uzluksiz kasrlar
5-§. Sonli funksiyalar

Tayanch iboralar: bo’linma; bo’luvchi; qoldiqli bo’lish haqidagi teorema; to’liqmas bo’linma; qoldiq; umumiy bo’luvchi; eng katta umumiy bo’luvchi; juft-juft tub sonlar; umumiy karrali; eng kichik umumiy bo’linuvchi; Yevklid algoritmi; murakkab son; Eratosfen g’alviri; arifmetikaning asosiy teoremasi; kanonik yoyilma; chekli uzluksiz kasrlar; aniq bo’linmalar; munosib kasrlar; butun qism; kasr qism; antye funksiya; Eyler funksiyasi; Myobius funksiyasi.



1-§. Butun sonlarning bo’linishi


a butun son b butun songa (b 0) bo’linadi yoki b son a sonni bo’ladi deyiladi, agar shunday q butun son mavjud bo’lib, a = bq tenglik o’rinli bo’lsa. Bunda q bo’linma, b bo’luvchi, a bo’linuvchi deb ataladi. a sonni b songa bo’linishini b|a shaklda belgilanadi, agar a son b songa bo’linmasa, uni b a bilan belgilaymiz.
Bo’linish xossalari:
a) bo’linish refleksiv, ya’ni aa;
b) bo’linish tranzitiv, ya’ni agar b|a va c|b bo’lsa, u holda c|a;
c) c|a dan ixtiyoriy butun b son uchun c|ab o’rinli;
d) c|a va c|b dan ixtiyoriy butun x va y sonlar uchun c|ax+by o’rinli (masalan, c|ab). Bu xossa ikkidan ko’p sonlar uchun ham o’rinli;
e) b|a va a|b bo’lsa, a = b;
f) b|a, a > 0, b > 0 dan b a kelib chiqadi.
Qoldiqli bo’lish haqidagi teorema: a – butun son, b – butun musbat son bo’lsin. a son hamma vaqt b songa bo’linmaydi, lekin hamma vaqt a son b songa qoldiqli bo’linadi, ya’ni shunday yagona butun q va r sonlar topiladiki, bular uchun
a = bq + r, 0  r < b
tenglik o’rinli bo’ladi, bu yerda q - to’liqmas bo’linma, r - soni a ni b ga bo’lgandagi qoldiq deyiladi.
1-m i s o l. a sonni 13 ga bo’lganda to’liqmas bo’linma 17 ga teng bo’lsa, a ning eng katta qiymatini toping.
Yechish. Masala shartiga ko’ra, a = 1317+r, 0  r < 13. Demak, a ning eng katta qiymatini topish uchun r = 12 bo’lishi kerak, ya’ni 1317 + 12 = 233. 
2-m i s o l. Bo’linuvchi 371, to’liqmas bo’linma 14 ga teng bo’lsa, bo’luvchi va unga mos qoldiqlarni toping.
Yechish. Masala shartiga ko’ra, 371 = b14 + r, 0  r < b , bundan 14b < 371, b  26. Boshqa tomondan 15b > 371, bundan b > 24. Demak, b=25; 26 va r = 21; 7 bo’ladi. 
3-m i s o l. a sonni b songa bo’lganda bo’linma q va nolmas qoldiq r ga teng. a ni qanday natural n songa ko’paytirganda bo’linma n marta ortadi?

Download 0.73 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling