Doğrusal regresyon, mustaqil (oldindan belgilangan) o'zgarmaydigan va qaram (mezon) o'zgaruvchisi o'rtasidagi munosabatlar haqida ko'proq ma'lumot olish uchun ishlatiladigan statistik uslubdir. Tahlillaringizda bir nechta mustaqil o'zgaruvchiga ega bo'lsangiz, bu bir nechta doğrusal regressiya deb nomlanadi. Umuman olganda, regressiya tadqiqotchiga "Nima uchun eng yaxshisi nimani anglatadi?" Degan umumiy savolni berishga imkon beradi.
Misol uchun, biz tana ommaviy indekslari (BMI) bilan o'lchanadigan semirib ketish sabablarini o'rganib chiqaylik. Xususan, biz quyidagi o'zgaruvchan shaxslarning BMI-ni sezilarli darajada aniqlashini bilishni istadik: haftada bir marta tayyorlangan tezkor taomlarning soni, hafta davomida ko'riladigan televizion soatlar soni, haftada mashq qilgan daqiqalar miqdori va ota-onalar BMI . Lineer regressiya ushbu tahlil uchun yaxshi uslubdir.
Regression Tenglama
Bir mustaqil o'zgaruvchan regressiya tahlilini o'tkazayotganingizda regressiya tenglamasi Y = a + b * X, Y o'zga o'zgaruvchiga, X - mustaqil o'zgaruvchiga, a - doimiy (yoki intercept), b - burchagi regresyon chizig'i . Masalan, GPA ning 1 + 0.02 * IQ regression denklemi bilan eng yaxshi taxmin qilinadiganini nazarda tutaylik. Agar talabada IQ 130 bo'lsa, unda GPA o'rtacha 3.6 (1 + 0.02 * 130 = 3.6) bo'lishi kerak.
Agar bir nechta mustaqil o'zgaruvchiga ega regressiyani tahlil qilsangiz, regressiya tenglamasi Y = a + b1 * X1 + b2 * X2 + ... + bp * Xp bo'ladi.
Misol uchun, biz GPA tahlilimizga ko'proq o'zgaruvchilar kiritishni xohlasak, masalan, motivatsiya va o'z-o'zini tartiblash choralari, biz bu tenglamadan foydalanamiz.
R-kvadrat
R-kvadrat, shuningdek koeffitsient koeffitsienti deb ham ataladi, regression denklemining modelga muvofiqligini baholash uchun tez-tez ishlatiladigan statistik. Boshqacha qilib aytganda, siz mustaqil o'zgaruvchilarning qaram o'zgarmaydiganligini taxmin qilishda qanchalik yaxshi?
R kvadratining qiymati 0.0 dan 1.0 gacha o'zgarib turadi va tushuntirilayotgan farqning ulushini olish uchun 100 bilan ko'paytirilishi mumkin. Masalan, GPA regressiya tenglamasiga faqat bitta mustaqil o'zgaruvchiga (IQ) qaytib boramiz ... Aytaylik, R-kvadrat tenglama uchun 0,4 ga teng. Buni izohlab berishimiz mumkin, ya'ni o'rtacha o'zgarishlarning 40% IQ bilan izohlanadi. Agar biz boshqa ikkita parametrni (motivatsiya va o'z-o'zini tartibga solish) qo'shsak va R kvadrati 0,6 ga ko'tarilsa, demak, IQ, motivatsiya va o'z-o'zini tartibga solish birgalikda GPA ballaridagi farqning 60% ni tushuntiradi.
Regression tahlillari odatda SPSS yoki SAS kabi statistika dasturlari yordamida amalga oshiriladi va shuning uchun R kvadrati siz uchun hisoblab chiqiladi.
Do'stlaringiz bilan baham: |