TEOREMA. Agar harakteristik tenglamaning k karrali ildizi bulsa, bu ildizga mos bo’lgan (2) sistemaning yechimlari
(11)
ko’rinishda bo’ladi.
Bunda lar ga nisbatan darajasi dan katta bo’lmaganko’p xadlilardir. Bu ko’p xadlilarning har birida ta o’zgarmas sonlar qatnashadi. Bu ko’pxadlilarning hammasidagi hamma koeffisiyentlardan tasi ixtiyoriy bo’lib, qolgan koeffisiyentlar shu ta koeffisiyentlar orqali ifodalanadi.Xususiy holda ko’pxadlilar o’zgarmas songa teng bo’lishi mumkin. Bu holdaharakteristik ildizga mos bo’lgan (2) sistemaning yechimi
bo’ladi.
Bundagi sonlardan k tasi ixtiyoriy bo’lib, qolgan koeffisiyentlar ular orqali ifodalanadi.
Amaliyotda ko’pxadlilarning koeffisiyentlarini topish uchun, ularni berilgan (2) sistemaga kuyib, bu ko’pxadlalarning koeffisiyentlariga nisbatan tenglamalar sistemasiga ega bulamiz. Bu koeffisiyentlardan k tasini ixtiyoriy deb, qolgan koeffisiyentlarni ular orqali ifodasini topamiz.
Misol 3
bularni berilgan tenglama kuyib, aniqmas koeffisiyentlar metodidan foydalansak larga nisbatan tenglamalar sistemasiga ega bulamiz.
bulardan
yechimlar
xususiy yechimlarni topish
1)
2)
3)
Agarda desak,
Do'stlaringiz bilan baham: |