1. Teylor formulasi. Teylor ko‘phadi. Peano ko‘rinishdagi qoldiq hadli Teylor formulasi


Teylor formulasi. Ba’zi-bir elementar funksiyalar uchun Teylor formulalari. Teylor formulasining limitlarni hisoblashga, taqribiy hisobga tatbiqlari


Download 0.65 Mb.
bet6/10
Sana08.05.2023
Hajmi0.65 Mb.
#1446584
1   2   3   4   5   6   7   8   9   10
Bog'liq
1. Teylor formulasi. Teylor ko‘phadi. Peano ko‘rinishdagi qoldiq

Teylor formulasi. Ba’zi-bir elementar funksiyalar uchun Teylor formulalari. Teylor formulasining limitlarni hisoblashga, taqribiy hisobga tatbiqlari
Teylor formulasi matematik analizning eng muhim formulalaridan biri bo‘lib, ko‘plab nazariy tatbiqlarga ega. U taqribiy hisobning negizini tashkil qiladi.
1. Teylor ko‘phadi. Peano ko‘rinishdagi qoldiq hadli Teylor formulasi. Ma’lumki, funksiyaning qiymatlarini hisoblash ma’nosida ko‘phadlar eng sodda funksiyalar hisoblanadi. Shu sababli funksiyaning x0 nuqtadagi qiymatini hisoblash uchun uni shu nuqta atrofida ko‘phad bilan almashtirish muammosi paydo bo‘ladi.
Nuqtada differensiallanuvchi funksiya ta’rifiga ko‘ra, agar y=f(x) funksiya x0 nuqtada differensiallanuvchi bo‘lsa, u holda uning shu nuqtadagi orttirmasini   ya’ni

ko‘rinishda yozish mumkin.
Boshqacha aytganda x0 nuqtada differensiallanuvchi y=f(x) funksiya uchun birinchi darajali

ko‘phad mavjud bo‘lib,  da  bo‘ladi. Shuningdek, bu ko‘phad     shartlarni ham qanoatlantiradi.
Endi umumiyroq masalani qaraylik. Agar  nuqtaning biror atrofida aniqlangan  funksiya shu nuqtada  hosilalarga ega bo‘lsa, u holda

shartni qanoatlantiradigan darajasi dan katta bo‘lmagan  ko‘phad mavjudmi?
Bunday ko‘phadni

ko‘rinishda izlaymiz. Noma’lum bo‘lgan  koeffitsientlarni topishda

shartlardan foydalanamiz. Avval Pn(x) ko‘phadning hosilalarini topamiz:





Yuqorida olingan tengliklar va (3) tenglikning har ikkala tomoniga x o‘rniga x0 ni qo‘yib barcha  koeffitsientlar qiymatlarini topamiz:





Bulardan  hosil qilamiz. Topilgan natijalarni (3) qo‘yamiz va

ko‘rinishda ko‘phadni hosil qilamiz. Bu ko‘phad Teylor ko‘phadi deb ataladi.
Teylor ko‘phadi (2) shartni qanoatlantirishini isbotlaymiz. Funksiya va Teylor ko‘phadi ayirmasini  orqali belgilaymiz:  . (4) shartlardan  bo‘lishi kelib chiqadi.
Endi  ya’ni  ekanligini ko‘rsatamiz. Agar  bo‘lsa,  ifodaning  ko‘rinishdagi aniqmaslik ekanligini ko‘rish qiyin emas. Unga Lopital qoidasini marta tatbiq qilamiz. U holda
, demak  da  o‘rinli ekan.
Shunday qilib, quyidagi teorema isbotlandi:

Download 0.65 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling