18- mavzu. Matematik statistika elementlari. Tanlanma. Poligon va gistogramma. Empirik taqsimot funktsiya, uning xossalari. Tanlanmaning sonli xarakteristikalari va ularning taqsimot qonunlari. Tanlanma taqsimotlarining nuqtaviy va intervalli
Download 3.83 Kb.
|
18- mavzu. Matematik statistika elementlari. Tanlanma. Poligon v-fayllar.org
18- mavzu. Matematik statistika elementlari. Tanlanma. Poligon va gistogramma. Empirik taqsimot funktsiya, uning xossalari. Tanlanmaning sonli xarakteristikalari va ularning taqsimot qonunlari. Tanlanma taqsimotlarining nuqtaviy va intervalli 18- mavzu. Matematik statistika elementlari. Tanlanma. Poligon va gistogramma. Empirik taqsimot funktsiya, uning xossalari. Tanlanmaning sonli xarakteristikalari va ularning taqsimot qonunlari. Tanlanma taqsimotlarining nuqtaviy va intervalli baholari. Korrelyatsion–regression tahlil elementlari. Korrelyatsiya-regression tahlilning texnikaviy iqtisodiy masalarga ahamiyati. Matematik statistika tasodifiy hodisalar yoki jarayonlar haqida shu hodisalarni kuzatish yoki tajribalar natijasida olingan ma’lumotlar asosida umumiy xulosalar chiqaradigan matematik fandir. Bu xulosalar umumiylik xususiyatlariga ega bo‘lib, kuzatilayotgan tasodifiy holatlarning barchasiga taaluqlidir. Matematik statistika ehtimollar nazariyasiga tayangan holda, uning usullari va nazariy hulosalari asosida o‘rganilayotgan obyekt haqida xulosalar chiqaradi. Agarda ehtimollar nazariyasida biz o‘rganayotgan matematik model to‘la-to‘kis berilgan deb hisoblab, bu model bizni qiziqtirayotgan holatlarni o‘rgansak, matematik statistikada biz qandaydir tasodifiy hodisalar natijalaridan kelib chiqqan holda(bular ko‘pchilik hollarda sonlardan iborat bo‘ladi), tasodifiy jarayonlarning matematik modelini tuzishga harakat qilamiz. Matematik statistika o‘zining xulosa chiqarish usullari yordamida o‘rganilayotgan obyektning nazariy ehtimoliy modelini tuzishga qaratilgan. Masalan, Bernulli sxemasida biz kuzatayotgan A hodisaning bitta tajribada ro‘y berish ehtimolligi p bo‘lsin. Bizni n ta bog‘liqsiz tajribalar natijasida A hodisasining k( ) marta ro‘y berish ehtimolligi qiziqtirsin. Bu masala ehtimollar nazariyasining usullari bilan to‘liq hal etiladi. Endi shunday masala qo‘yilsin: n ta bog‘liqsiz tajribalarda bizni qiziqtiradigan A hodisa k marta ro‘y bersin. U holda shu hodisaning bitta tajribada ro‘y berish ehtimolligi p deb qanday miqdorni olish kerak? Bu hol matematik statistikaning namunaviy masalasidir. Ko‘rinib turibdiki, matematik statistika masalalari ehtimollar nazariyasi masalalariga teskari masalalar ekan. Matematik statistika o‘z hulosalarida biz qiziqayotgan tasodifiy hodisalarni tavsiflaydigan, odatda sonlardan iborat bo‘lgan statistic ma’lumotlar asosida o‘rganilayotgan tasodifiy jarayonning nazariy-ehtimoliy qonuniyatlarini tuzish uchun turli usullarni ishlab chiqishga qaratilgandir. Endi Bernulli sxemasi misolida matematik statistika shug‘ullanadigan va hal qilinadigan asosiy masalalarni ko‘rib chiqaylik. I. Noma’lum parametrni statistik baholash. n ta tajriba natijasida biz kuzatayotgan A hodisa m marta ro‘y bersin. U holda, shu ma’lumotlar asosida biz shunday miqdorni aniqlaylikki, uni Download 3.83 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling