2-Ma’ruza. Skalyar maydonning sath chiziqlari va sirtlari, yoʻnalish boʻyicha hosila. Skalyar maydonning gradiyenti, yuksaklik chiziqlari va sirtlari


Download 64.02 Kb.
bet2/4
Sana10.11.2023
Hajmi64.02 Kb.
#1764021
1   2   3   4
Bog'liq
2 ma\'ruza.Skalyar maydon. Skalyar maydonning sath chiziqlari va sirtlari, yoʻnalish boʻyicha hosila. Skalyar maydon. Skalyar maydonning gradiyenti, yuksaklik chiziql

Skalyar maydonlarning xossalarini sath sirtlari yoki sath chiziqlari yordamida o‘rganish mumkin, ular shu maydonlarning geometrik tasviri hisoblanadi.

  1. Sath sirtlari.

Ta’rif. Skalyar maydonning sath sirti deb fazoning shunday nuqtalari to‘plamiga aytiladiki, unda maydon funksiyasi o‘zgarmas qiymatga ega bo‘ladi.
Bu sirtlar

tenglama bilan aniqlanishi ravshan, bunda -o‘zgarmas son.
ga turli qiymatlar berib, sath sirtlari oilasini hosil qilamiz. Bu sirtlarda skalyar funksiya o‘zgarmas bo‘lib qoladi.
Agar, masalan, maydon

funksiya bilan ifodalangan bo‘lsa, u holda markazi koordinatalar boshida bo‘lgan

sfera sath sirti vazifasini bajaradi.
2.Sath chiziqlari. Yassi skalyar maydon geometrik jihatdan sath chiziqlari yordamida tasvirlanadi.
Ta’rif. Yassi skalyar maydonning sath chizig‘i deb tekislikning shunday nuqtalari to‘plamiga aytiladiki, unda maydon funksiyasi o‘zgarmas qiymatga ega bo‘ladi.
Bu chiziqlar

tenglama bilan aniqlanadi, bunda - o‘zgarmas son.

X

Y

ga turli qiymatlar berib, sath chiziqlari oilasini hosil qilamiz. Bu chiziqlarda skalyar funksiya doimiy bo‘lib qoladi. Agar, masalan, skalyar maydonlar funksiya bilan berilgan bo‘lsa, ular uchun sath chiziqlari vazifasini konsentrik aylanalar oilasi bajaradi.

6-chizma.




3.Berilgan yo‘nalish bo‘yicha hosila.
Skalyar maydonning muhim tushunchasi berilgan yo‘nalish bo‘yicha hosiladir. Faraz qilaylik, skalyar maydonning differensiallanuvchi funksiya berilgan bo‘lsin.
Bu maydondagi biror nuqtani va shu nuqtadan chiquvchi biror nurni qaraymiz. Bu nurning o‘qlari bilan tashkil qilgan burchaklarini orqali belgilaymiz. Agar birlik vektor bu nur bo‘yicha yo‘nalgan bo‘lsa, u holda qo‘yidagiga ega bo‘lamiz:
.
Faraz qilaylik, biror nuqta shu nurda yotgan bo‘lsin. va nuqtalar orasidagi masofani bilan belgilaymiz: . Skalyar maydon funksiyasi qiymatlari ayirmasini shu funksiyaning yo‘nalishda shu nuqtalardagi ortirmasi deb ataymiz va bilan belgilaymiz. U holda

yoki
.

Download 64.02 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling