5-lekciya. Sızıqlı algebralıq teńlemeler sistemasın sheshiwdıń Gauss hām Gauss-Jordan usılı
Download 156.55 Kb.
|
5-lekciya
. Demek, sızıqlı teńlemeler sistemasın sheshiwdiń Gauss usılı berilgen sistemaǵa teń kúshli bolǵan (2), (4), (6), (8), (9) teńlemelerinen dúzilgen úshmúyeshli matricaǵa iye sistemaǵa alıp keledi. Bul usıldan sızıqlı teńlemeler sistemasın sheshiwde paydalanıw ushın sistemanıń «jetekshi elementleriniń» nolden ózgeshe bolıwı zárurli hám jeterli shárt boladı. Gauss usılınan paydalanıp ámeliy mısallar sheshiwde sistemanıń keńeytirilgen matricası ustinde elementar túrlendiriwler orınlaw arqalı onı úshmúyeshli matricaǵa keltirgen qolay. Keyin usı úshmúyeshli matrica matricası bolatuǵın sistema sheshiw ańsat boladı. Mısal ushın, sistemasın sheshiw kerek bolsın. Bul sistemanıń keńeytirilgen matricası . Usı matricanı úshmúyeshli formaǵa iye matricasına alıp kelemiz. 1) bolǵanı ushın matricasını birinshi qatarın kóbeytip ekinshi hám tórtinshi qatarlarǵa, keyin ge kóbeytip úshinshi qatarǵa qosamız. Sonda . Endi keyingi matricanıń ekinshi hám tórtinshi qatarların -2 ge kóbeytip jazǵanan soń ekinshi qatardı dáslep tórtinshi qatardan alamız, keyin 2ge kóbeytip ushinshi qatarǵa qosamız, Úshinshi qatardı -1ge kóbeytemiz, tórtinshi qatardı 4ke bólemiz, keyin úshinshi qatardı 6ǵa bólip tórtinshi qatardan alamız, nátiyjede matricasına iye bolamız. Endi keńeytirilgen matricası bolǵan sistema jazsaq, túrindegi berilgen sistemaǵa ekvivalent bolǵan sistema payda boladı. Usı sistemadan belgisizlerdiń mánisleri tabıladı. Download 156.55 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling