4-Kattalashtirish: ta'lim misollarini ishlatib, noto'g'ri ma'lumotlarni qo'shing va tasvirni tanib olishda o'lchovni o'zgartirish va tasvirni aylantirish kabi buzilishlarni qo'shing. Fikr, yaxshi ishlashga erishish uchun modelni ko'proq ma'lumotlarga o'rgatish har doim ham yaxshi. Shuni esda tutingki, ilg'or misollar modelga mustaqil misollar sifatida juda ko'p ma'lumot qo'shmaydi, ammo bu ko'proq ma'lumotni yig'ish mumkin bo'lmaganda hali ham to'g'ri alternativ. 4-Kattalashtirish: ta'lim misollarini ishlatib, noto'g'ri ma'lumotlarni qo'shing va tasvirni tanib olishda o'lchovni o'zgartirish va tasvirni aylantirish kabi buzilishlarni qo'shing. Fikr, yaxshi ishlashga erishish uchun modelni ko'proq ma'lumotlarga o'rgatish har doim ham yaxshi. Shuni esda tutingki, ilg'or misollar modelga mustaqil misollar sifatida juda ko'p ma'lumot qo'shmaydi, ammo bu ko'proq ma'lumotni yig'ish mumkin bo'lmaganda hali ham to'g'ri alternativ. 5-Erta to'xtash: bu usul xarajat funkciyasini optimallashtirishga va uni tartibga solishga harakat qiladi, shuning uchun u kamroq umumlashma xatosiga ega. Bu har bir iteraciya bo'yicha tasdiqlash xatosini yozib olish uchun ishlaydi. Tekshirish xatosi yaxshilansa, biz parametrlarning nusxasini saqlaymiz va optimallashtirish algoritmi tugamaguncha davom etamiz. Hisoblash vaqti va resurslari biz uchun muammo bo'lsa, bu yaxshi usul. Biz L2 parametrlarini tartibga solishni ko'rib chiqamiz. Biz L2 parametrlarini tartibga solishni ko'rib chiqamiz. L2 parametrini regulyarizatsiyalash. Odatda biz ofsetlarni tartibga solmaymiz va faqat og'irliklarni tuzatmaymiz. Hessen matritsasidan va o'z qadriyatlaridan va o'z vektorlaridan vazn yo'qotishining sezuvchanligini ko'rish uchun foydalanishimiz mumkin. Wi ning og'irligi (λi / λi + α) bilan o'zgartiriladi, bu erda λi (o'z qiymati) bu yo'nalishda Gessian matritsasining sezuvchanligini (o'z vektori) va a tartibga soluvchi giperparametrni o'lchaydi. Shuning uchun,
Do'stlaringiz bilan baham: |