9-bob. Aniq integral


Aniq integralni hisoblash usullari


Download 452.51 Kb.
bet9/14
Sana24.12.2022
Hajmi452.51 Kb.
#1055727
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
9-aniq integral

2. Aniq integralni hisoblash usullari

  1. Agar y=f(x) funksiya [a,b] kesmada uzluksiz bo‘lsa, unda yuqori chegarasi o‘zgaruvchi bo‘lgan aniq integral orqali aniqlanadigan


funksiya xossasi qayerda to‘g‘ri ko‘rsatilgan ?
A) . B) . C) .
D) . E) .

  1. aniq integralni Nyuton–Leybnits formulasi bilan hisoblashda quyidagi amallardan qaysi biri bajarilmaydi ?

A) f(x) funksiyaning biror F(x) boshlang‛ich funksiyasi topiladi.
B) boshlang‘ich funksiyaning F(a) va F(b) qiymatlari hisoblanadi.
C) F(b)+F(a) yig‘indi hisoblanadi.
D) F(b)– F(a) ayirma hisoblanadi.
E) ko‘rsatilgan barcha amallar bajariladi .

  1. Agar y=F(x) berilgan [a,b] kesmada y=f(x) funksiyaning boshlang‛ich funksiyasi bo‘lsa, unda aniq integral uchun Nyuton–Leybnits formulasi qayerda to‘g‘ri ifodalangan ?

A) . B) . C) .
D) . E) .

  1. aniq integralning qiymatini Nyuton–Leybnits formulasi yordamida toping.

A) 1. B) 0. C) 1/2. D) –1. E) 2/3.

  1. aniq integralning qiymatini Nyuton–Leybnits formulasidan foydalanib aniqlang.

A) 0. B) 1. C) 2/3. D) 0.75. E) –0.3.

  1. aniq integralning qiymatini Nyuton–Leybnits formulasi yordamida hisoblang.

A) π . B) π/2 . C) π/3 . D) π/4 . E) π/6 .

  1. aniq integral qiymatini Nyuton–Leybnits formulasi yordamida toping.

A) π . B) π/2 . C) π/3 . D) π/4 . E) π/6 .

  1. aniq integralni bo‘laklab integrallash formulasi yordamida

hisoblash jarayonida quyidagi amallardan qaysi biri bajarilmaydi ?
A) u=u(x) funksiyaning du differensiali hisoblanadi.
B) dv=dv(x) differensial bo‘yicha v=v(x) funksiya topiladi.
C) u(b)v(b)+ u(a)v(a) yig‘indi hisoblanadi.
D) integral hisoblanadi.
E) ko‘rsatilgan barcha amallar bajariladi.

  1. Aniq integralni bo‘laklab integrallash formulasi qayerda to’g’ri yozilgan?

A) . B) . C) .
D) . E) .

  1. aniq integral qiymatini bo‘laklab integrallash formulasi yordamida toping.

A) π . B) π/2 . C) π/3 . D) π/4 . E) π/6 .


  1. aniq integralni bo‘laklab integrallash formulasi yordamida hisoblang.

A) e . B) e/2 . C) 1 . D) 0.5 . E) 2 .

  1. aniq integralni o‘zgaruvchilarni almashtirish formulasi orqali hisoblashda quyidagi amallardan qaysi biri bajarilmaydi ?

A) x=φ(t) almashtirma tanlanadi.
B) φ(t)=a va φ(t)=b tenglamalarning yechimlari α va β topiladi.
C) f[φ(t)] murakkab funksiya tuziladi.
D) almashtirmaning hosilasi φ′(t) hisoblanadi.
E) ko‘rsatilgan barcha amallar bajariladi.

  1. aniq integralni x=(t) almashtirma orqali hisoblash formulasini ko‘rsating.

A) . B) .
C) . D) .
E) .

  1. aniq integralni hisoblash uchun qaysi almashtirmadan foydalanish mumkin?

A) x=t2 . B) x2=t . C) x=sint . D) sinx=t . E) sinx2=t .

  1. aniq integral qiymatini o‘zgaruvchilarni almashtirish usulida hisoblang.

A) . B) π/2 . C) 0 . D) 1 . E) π .

  1. aniq integral qiymatini hisoblash uchun qaysi almashtirmadan foydalanish mumkin?

A) t=1/x. B) . C) . D) . E) .

Download 452.51 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling