9-ma’ruza. Saytlarni aylanish va tanlash algoritmlari. Reja
Download 172.01 Kb.
|
9а-mavzu
- Bu sahifa navigatsiya:
- Giperkub aylanishi algoritmi.
out (token, 1) through U
Har bir saytning marker qabul qilgandan keyingi harakati (token, k): begin if k= m*n then return(OK) else if (kmod n = 0) then out(token,k+1) through U elseout(token,k+1) through R end 9.2 va 9.3- rasmlarda 3 x4 va 2 x 5 torlarning aylanish taartibi ko`rsatilgan. Aylanishning initsiator – sayti yulduzcha bilan belgilangan, “OK” harflari esa aylanishning tugaganligini xabar qiladigan saytni bildiradi. Qovurg`a oldida qiymati k ga teng bo`lgan son yozilgan, bu son bu qovurg`a bo`ylab bir saytdan boshqa saytga uzatiladi. 9.2- rasm. 3x4 torning aylanish tartibi. 9.3-rasm. 2 x 5 torning aylanish tartibi. Giperkub aylanishi algoritmi. Graflar teoreyasida qn graflar sinfi mavjud bo`lib, ular n o`lchamli kublar yoki giperkublar deb ataladi. Bu oila quyidagi formulalar ko`rinishida tuziladi Qn = K2Qn – 1 , Q 1 = K2 . Bu yerda K2 - bir qovurg`a bilan birlashtirilgan ikki uchli to`liq grafdir. «» amali - ko`paytirish amalidir. Bu amal A va B graflar uchun quyidagicha bajariladi. Bu amal natijasi C = AB grafi hisoblanadi, ko`plab uchlar dekat asaridagi A va B graflar uchi ko`pligiga o`xshash qiymatli aloqada bo`ladi, V(C) = V(A) V(B).C grafning E(C) qovurg`alar ko`pligi E(A) va E(V) ko`paytmasidan vujudga keladi. v1V(C) uchi ikki uchlardan (a1 , b1), a1V(A), b1V(B), iborat bo`lsin, v2V(C) uchi esa ikki uchdan V((a2 , b2), a2V(A), b2B)bo`lsin, bunda quyidagi shartlardan biri bajarilsa v1 va v2 (ular o`rtasida qovurg`a mavjud) chegaradosh hisoblanadi: 1) a1 = a2 va b1chegaradosh b2 ; 2) b 1 = b2 va a1 chegaradosh a2 ; Q 1 = K2 giperkubi geometric shakllar ko`rinishi nuqtai nazaridan “qirqim” hisoblanadi. U ikki uchdan iborat. Ularning har bir darajasi 1 ga teng. Q2 giperkubi graflar nazariyasi nuqtai nazaridan to`rt uchdan iborat tsikl, geometric ko`rinishi esa kvadrat hisoblanadi. Har bir uchning darajasi 2 ga teng. Q3 giperkubi uchlari va qovurg`alari bilan geometric shakl – kubga kub sifatida tasvirlanadi. Bu giperkub uchinchi darajaga ega bo`lgan 8 uchdan iborat. Umuman olganda Qn giperkubi n darajadagi 2nuchlardan iborat. Bu bilan uchlarni n dagi qatorlar, bit – uchlar raqamining ikkilik ko`rinishi: 000 … 0 dan 111 … birgacha bilan kodlash qulaydir. Raqamning (qator belgisi) chap razryadini nol razryad deb ataymiz, o`ngini esa (n – 1)-мdeb ataymiz. Shundan giperkubdagi uchlar bir bit bilan farq qilsa chegaradosh bo`ladi. Masalan, 010 kodli uch bilan 110, 000, 011 kodli uchlar chegaradoshdir. Har bir u tugunga tutashgan qovurg`alarni 0 dan n – 1 gacha bo`lgan sonlar bilan raqamlash mumkin, bunda 0 raqamli qovurg`a u tugunni giperkubning, u ning 0 razryaddagi kodidan farq qiladigan kodli tuguniga ulaydi. Shuningdek 1 raqamli qovurg`a 1 razryaddagi kodi farqi bo`lgan uchga boradi va hokazo. Algoritmda Giperkub uchun amal. Initsiator uchun (bir marta bajariladi): Download 172.01 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling