Amxm = θ bu yerda θ


Download 52.5 Kb.
Sana16.04.2023
Hajmi52.5 Kb.
#1359544
Bog'liq
Chiziqli bog`liq va chiziqli erkli vektorlar sistemalari


Chiziqli bog`liq va chiziqli erkli vektorlar sistemalari

n o`lchovli m ta vektorlardan iborat (*) vektorlar sistemasi berilgan bo`lsin.


a1x2 a2x2 + … + amxθ (bu yerda θ - n o`lchovli nol vektor) vektor tenglama yoki shuning o`zi m ta noma`lumli n ta chiziqli bir jinsli tenglamalar sistemasini tuzamiz.
a1x2 a2x2 + … + amxm=θ vektor tenglama aniq bo`lib, yagona trivial (nol) yechimga ega bo`lsa, (*) vektorlar sistemasi o`zaro chiziqli bog`lik bo`lmagan yoki chiziqli erkli vektorlar sistemasi deyiladi.
a1x2 a2x2 + … + amxm θ vektor tenglama aniqmas bo`lib, trivial yechimdan tashqari notrivial (nolmas) yechimlarga ham ega bo`lsa, (*) vektorlar sistemasi chiziqli bog`lik sistema deyiladi. Aniqlik uchun nolmas (x1; x2; …; xm) yechimda xm≠0 bo`lsin. Unda

a(m) = a1 a2- … am-1

munosabat o`rinli bo`lib, (*) vektorlaridan biri qolganlarining chiziqli kombinatsiyasiga teng. Bu esa sistemaning chiziqli bog`liqligini ang-latadi.


Agar vektorlar sistemasi yagona nolmas vektordan tashkil topgan bo`lsa chiziqli erkli; yagona nol vektordan iborat bo`lsa, chiziqli bog`-liqdir. Chiziqli erkli sistemaning har qanday qism osti sistemasi – chi-ziqli erkli, chiziqli bog`liq sistemaning har qanday kengaytirilgan siste-masi esa chiziqli bog`liqdir. Demak, tarkibida nol vektor mavjud har qanday vektorlar sistemasi chiziqli bog`liqdir.
Berilgan sistema vektorlari koordinatalaridan

matritsa tuzamiz.
(*) vektorlar sistemasining chiziqli erkli yoki chiziqli bog`liqligi quyidagi teorema yordamida aniqlanadi.
Teorema. Agar berilgan (*) sistema vektorlari aniqlaydigan A mat-ritsa rangi r sistema vektorlari soni m ga teng bo`lsin, ya`ni r = m, (*) sistema chiziqli erkli, agarda A matritsa rangi r, sistema vektorlari soni m dan kichik, ya`ni r < m bo`lsa, (*) sistema chiziqli bog`liqdir.
Teorema isboti bir jinsli chiziqli tenglamalar sistemasining yagona trivial yechimga egaligi va trivial yechimdan tashqari notrivial yechim-larga egaligi haqidagi teorema asosida isbotlanadi va uning shartlari tasdig`ini quyidagi xususiy misollarda tekshirib ko`rish mumkin.
Masalalar.
1) R2 haqiqiy fazoda (koordinatalar tekisligida) ikki a1(a11; a21) va a2(a12; a22) vektorlardan iborat sistema berilgan bo`lsin. Agar vektorlar kollinear bo`lmasa, r(A) = 2 = 2 = m munosabatlar o`rinli va sistema – chiziqli erkli. Agarda vektorlar kollinear bo`lsa, r(A) = 1 < 2 = m munosabatlar o`rinli bo`lib, sistema chiziqli bog`liqdir.
2) R2 haqiqiy fazoda a1, a2, …, ak (k ≥ 3) vektorlar berilgan bo`lsin. Ushbu holda r(A) ≤ 2 < k = m munosabatlar o`rinli bo`lib, sistemaning ixtiyoriy vektori qolganlarining chiziqli kombinatsiyasi shaklida tasvirlanishi mumkin. R2 fazoda 3 ta va undan ortiq vektorlar sistemasi har doim chiziqli bog`liq sistemani tashkil etadi.
3) R3 haqiqiy fazoda a1(a11; a12; a13) va a2(a12; a22; a32) vektorlar sistemasi berilgan bo`lsin. Agar vektorlar kollinear bo`lmasa, r(A) = 2 = 2 = m munosabatlar o`rinli va sistema chiziqli erkli. Agarda vektorlar kollinear bo`lsa, r(A) = 1 < 2 = m shartlar bajariladi va sistema chiziqli bog`liqdir.
4) R3 haqiqiy fazoda a1, a2, a3 vektorlardan iborat sistema berilgan bo`lsin. Agar vektorlar o`zaro komplanar bo`lmasa, r(A) = 3 = 3 = m munosabatlar o`rinli va sistema – chiziqli erkli. Aks holda, r(A) ≤ 2 < 3 = m shartlar o`rinli bo`lib sistema chiziqli bog`liqdir.
5) R3 haqiqiy fazoda a1, a2,…, ak (k ≥ 4) vektorlar sistemasi uchun r(A) ≤ 3 < k = m munosabatlar o`rinli bo`lib, sistema har doim chiziqli bog`liq. R3 fazoda kamida to`rtta vektorlardan iborat har qanday sistema chiziqli bog`liqdir va hokazo.
Masala. a1(2; -1; 3; 0), a2(8; -9; 1; -4), a3(-3; 4; 1; 2) vektorlar sistemasining chiziqli erkli yoki chiziqli bog`liqligini aniqlang.
Sistema vektorlari koordinatalaridan matritsa tuzamiz va uning rangini Gauss algoritmi yordamida aniqlaymiz:



r(A) = 2 < 3 = m munosabatlar o`rinli bo`lgani uchun berilgan sistema chiziqli bog`liq sistemani tashkil etadi.
Download 52.5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling