An open language model for


theorem mathd_algebra_338: fixes


Download 0.59 Mb.
Pdf ko'rish
bet5/5
Sana26.10.2023
Hajmi0.59 Mb.
#1725676
1   2   3   4   5
theorem
mathd_algebra_338:
fixes
a b c :: real
assumes
"3
*
a
+
b
+
c
= -3"
and
"
a
+ 3 *
b
+
c
= 9"
and
"
a
+
b
+ 3 *
c
= 19"
shows
"
a
*
b
*
c
= -56"
proof
-
(
*
Summing all three equations yields that 5a
+
5b
+
5c
=
-3
+
9
+
19
=
25.
Thus, a
+
b
+
c
=
5.
*
)
have
"5 *
a
+ 5 *
b
+ 5 *
c
= -3 + 9 + 19"
using
assms
<
ATP
>
then have
"5 * (
a
+
b
+
c
) = 25" <
ATP
>
then have
"
a
+
b
+
c
= 5" <
ATP
>
(
*
Subtracting this from each of the given equations, we obtain that
2a
=
-8, 2b
=
4, 2c
=
14. Thus, a
=
-4, b
=
2, c
=
7, and their product is
abc
=
-4 \times 2 \times 7
=
-56.
*
)
then have
"2 *
a
= -8" "2 *
b
= 4" "2 *
c
= 14"
using
assms
<
ATP
>
then have
"
a
= -4" "
b
= 2" "
c
= 7" <
ATP
>
then
show
?
thesis
<
ATP
>
qed
Figure 8: Informal-to-formal proving. The model is given the problem, informal proof, and
formal statement, following Jiang et al. (2023). It generates a formal proof (starting with proof -)
containing Isabelle code, comments ((*...*)) that align the informal and formal proofs, and calls
to an automated prover (shown as

). The proof is from L
LEMMA
-7b with greedy decoding.
28

Document Outline

  • Introduction
  • Approach
  • Evaluation
  • Related Work
  • Conclusion
  • Author Contributions
  • Data: Proof-Pile-2
    • Mathematical code: AlgebraicStack
      • GitHub code
      • Lean proofsteps
      • Isabelle Proofsteps
      • Stack Filtering
    • Papers: Arxiv
    • Web: OpenWebMath
  • Evaluation Harness
  • Evaluation: Experiment Details
  • Datasheet
  • Additional Results
    • Proof autoformalization
  • Supervised Finetuning
  • Qualitative Examples

Download 0.59 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling